确定性的终结-第6章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
的工作基于一个在最近几十年才达到前沿的数学领域——泛函分析——的新进展。我们将看到,我们的表述需要一个扩展的泛函空间。这个新的数学领域目前在认识自然法则中扮演着十分重要的角色,它使用被芒德布罗( Benoit
Mandelbrot)称为分形的广义函数。 ” 我们需要一种 “ 神灵 ” 观点来保留确定论思想。但没有任何人的测量,没有任何理论预言能以无限精度给我们初始条件。
考虑拉普拉斯妖在确定性混沌的世界里变成什么,是有意义的。除非他以无限精度知道初始条件,否则他不再能预测未来。只有那样,它才能继续使用轨道描述。但有一种更强大的不稳定性,无论初始描述的精度如何,它都会使轨道破坏。这种形式的不稳定性极其重要,因为它既适用于经典力学又适用于量子力学。
我们的故事确实始于 19世纪末庞加莱的工作。按照庞加莱,动力学系统由其粒子的动能加上粒子相互作用产生的势能来描述。一个简单的例子是自由的无相互作用的粒子。在这里没有势能,而且轨道的计算是平凡的,这样的系统被定义为可积的。庞加莱问,是不是所有的系统都可积?我们能否选择适当的变量来消去势能?通过显示这通常是不可能的,他证明了动力学系统基本上都是不可积的。
在此有必要稍加停顿,仔细思考一下庞加莱的结论。假设庞加莱证明所有的动力学系统都是可积的,这将意味着所有的动力学运动与自由无相互作用粒子是同构的。这将没有时间之矢的立足之地,因而也就没有自组织和生命本身的立足之地。可积系统描述的是一个静态的、确定性的世界。庞加莱不仅证实了不可积性,而且指明了造成不可积性的原因,即自由度之间共振的存在。我们将在第五章更详细地看到,每一种运动形式都对应于一个频率,这方面最简单的例子是给走质点和中心点的谐振子。质点受到的力与它离开中心点的距离成正比,如果我们将质点从中心拉开,它会以一个确定的频率振动。正是通过这些频率,我们得到共振这个对庞加莱定理十分重要的概念。
我们都多多少少熟悉共振的概念,当我们迫使弹簧离开其平衡位置,它将以一个特征频率振动。现在给弹簧施加一个外力,这一外力具有可变的频率。当弹簧的频率与外力的频率二者有一个简单的数字比率(即其中一个频率是另一个频率的数倍)时,弹簧的振幅将急剧加大。当我们在一件乐器上演奏一个音符时会发生同样的现象。我们会听见谐音。共振“耦合”声音。
现在考虑由两个频率所刻画的系统。根据定义,只要 n 1 ω 1 + n 2 ω 2 = 0,其中nl和n 2 都是非零整数,我们就得到了共振。这表明 ω 1 / ω 2 =…n 2 /n 1 ,即频率之比为有理数。庞加莱已表明,共振在动力学中带来具有 “ 危险的 ” 分母 1/(n 1 ω 1 +n 2 ω 2 )的项,只要有共振(即相空间中的点满足 n 1 ω 1 +n 2 ω 2 =0),这些项就会发散。其结果是,我们计算轨道时会碰到障碍。
这就是庞加莱不可积性的来源。 18世纪的天文学家就已知道 “ 小分母问题 ” ,但庞加莱定理表明,这一困难是绝大多数动力学系统所共有的。庞加莱将其称为 “ 动力学的普遍问题 ” 。然而,在相当长的时期里,庞加莱结果的重要性被忽视了。
玻恩写道:“如果自然界以多体问题的解析困难为后盾,使自己强大起来以抵御知识进步,是十分不同寻常的。”很难相信一种技术上的困难(由于共振而导致的发散)能改变动力学的概念结构。我们现在从一个不同的角度来看这一问题。对我们来讲,庞加莱的发散是一个良机。事实上,我们现在可以超出庞加莱的消极陈述,并表明不可积性和混沌一样为动力学定律的新统计表述铺平了道路。由于科尔莫戈罗夫( Andrei
N.Kolmogorov)及随后阿诺德(Vladimir IgorevichArnold)、莫泽(Jurgen
Kurt Moser)的工作(所谓 KAM理论),人们终于理解了不可积性,这在庞加莱之后又花了60年的时间。不可积性不是玻恩所言自然界抵制知识进步的令人沮丧的表现,而是动力学的新起点。
KAM理论处理共振对轨道的影响。频率。通常依赖于动变量如坐标和动量的值,它们在相空间不同点的取值不同。其结果是,有些点由共振来刻画,而另一些点则不然。对于混沌来讲,这又将使其相空间达到特别复杂的程度。按照KAM理论,我们观察到两类轨道: “ 正经的 ” 确定性的轨道,以及与共振相关联的在相空间无规律地漫游的 “ 散漫的 ” 轨道。
这一理论另一个重要结果是,当我们增加能量值时,随机性占据的区域会随之扩大。对于某个临界能量值,会出现混沌:随着时间的推移,我们看到相邻轨道呈指数发散。而且,对于充分发展的混沌来说,由轨道产生的点云会导致扩散,但扩散与我们将来达到均匀性的方法相关联。它是一个产生熵的不可逆过程(见第 1节)。虽然我们从经典动力学出发,我们现在却观察到时间对称性的破缺。这如何可能,正是我们为了克服时间佯谬而必须解决的主要问题。
庞加莱共振在物理学中扮演着基本角色。光的发射或吸收是共振所致,因为它是使相互作用的粒子系统达到平衡的途径。相互作用的场也导致共振。事实上,很难在经典物理学或量子物理学中找到一个共振在其中没有扮演显著角色的重要问题。但是,我们如何克服与共振相关联的发散呢?对此已取得了一些重要进展。如在第 III节中,我们必须区分个体层次(轨道)和统计层次(由概率分布 ρ 描述的系综)。在个体层次上我们有发散,但这些发散在统计层次上可以得到解决(参见第五、第六章),共振在统计层次上产生与共鸣导致的伴声大致类似的事件耦合。其重要特点是,出现了与轨道描述不相容的、新的非牛顿项。这并不奇怪。共振不是局域事件,因为它们并非在给定地点或给定时刻发生。共振蕴涵着非局域描述,所以不能包含在与牛顿动力学相关联的轨道描述之中。我们将要看到,共振导致了扩散运动。当我们从相空间的一个点 P 0 出发,我们不再能肯定地预言经过一段时间。之后其新位置Pt。简言之,初始点
P 0 以明确的概率产生许多可能的点P 1 ,P 2 ,P 3 。
在图 1.7里,区域D中的每个点有一个在时刻。出现的非零概率或明确的转移概率。这种情况类似于 “ 无规行走 ” 或 “ 布朗运动 ” 的情形。在最简单的情况里,这一条件可以用粒子在一维点阵中的运动来说明,点阵以规则的时间间隔作一步转移(参见图 1.8)。
在每一步,质点往左去和往右去的概率均为 1/2。在每一步,未来都是不确定的。从一开始,就不可能谈到轨道。从数学上来讲,布朗运动由扩散型方程(称为福克尔…普朗克(Fokker-Planck)方程)描述。扩散是有时间方向的。如果我们从位于同一源的点云出发,随着时间的推移,这个点云将分散,一些粒子出现在远离源头的地方,另一些则出现在离源头较近的地方。令人瞩目的是,从经典动力学出发,共振精确地导出了扩散项,也就是说,共振甚至在经典力学框架中引入了不确定性,并打破了时间对称性。
对于可积系统而言,当这些扩散因素不存在时,我们就会回到轨道描述,但是总体上,动力学定律必须在概率分布层次上进行表述。因而,基本问题是:在什么情况下,我们可以预期成为可观察量的扩散项?当做到这一点时,概率变成自然的基本属性。这是有关确定牛顿动力学有效范围的问题(或有关我们下一节将要考虑的量子理论的有效范围问题),它不啻是一次观念上的革命。几个世纪以来,轨道被看作是经典物理学基本的、原始的客体。相反,我们现在则把轨道看作是共振系统的有效范围,在第五章我们将回到这个问题上来,在第六章针对量子力学讨论一个平行的问题。然而,此时我们先给出一些暂时的回答。对于瞬时相互作用(一束粒子与障碍物碰撞并逸出),扩散项可以被忽略;但对于持续相互作用(一束稳定的粒子流落在障碍物上),扩散项就起支配作用了。在计算机模拟时,如同在真实世界中一样,我们可以再现这两种情况,因而可以检验我们的预言。结果毫不含糊地表明,对持续相互作用出现扩散项,于是导致牛顿力学描述以及正统的量子力学描述的失败。在这两种情况下,与在确定性混沌中一样,我们都得到“不可约的”概率描述。
但还有另一个更值得注意的情况。宏观系统通常用热力学极限来定义,按照热力学极限,无论粒子数 N还是体积V都变大。我们将在第五章和第六章研究这一极限。在与这一极限相联系的现象的观测中,物质的新属性变得显而易见。
如果我们仅仅考虑少量粒子,就不能说它们是否形成液体或气体。物质的状态和相变最终由热力学极限所定义。相变的存在表明,当我们采取还原论者态度时必须谨慎行事。相变对应于突现属性。它们在单个粒子的层次上毫无意义,只有在群体层次才有意义。这种争论在某种程度上与基于庞加莱共振的争论类似。持续相互作用意味着我们不能将系统的一部分取出来孤立地加以考虑。正是在这种全局层次,在群体层次上,过去和未来之间的对称性被打破了,科学可以承认时间流。这解决了一个长期存在的难题。实际上,在宏观物理学中,不可逆性和概率是最明显不过的。
热力学适用于不可积系统。这意味着,我们不能用轨道来解决动力学难题,但我们能用概率解决它。因此,如同确定性混沌情形那样,经典力学的新统计表述导致数学框架的拓展。这在某种程度上不由得让我们回想起广义相对论。像爱因斯坦所表明的那样,为了包含引力,我们必须从欧几里得几何转向黎曼几何。在泛函分析中,所谓希尔伯特空间扮演着特殊的角色,它将欧几里得几何扩展到包含无穷维数“函数空间”的情形。传统上,量子力学和统计力学都应用了希尔伯特空间。为了得到对不稳定系统和热力学极限有效的新表述,我们必须从希尔伯特空间转向更普遍的泛函空间。这一观点将在第四到第六章中详加解释。
自本世纪初以来,我们已经习惯于在我们面对微观客体,如原子和基本粒子时,或者当我们处理天体物理维度时,产生经典力学有待扩展的想法。而不稳定性同样要求扩展经典力学则很出乎意料。我们现在将转入的量子力学情形十分类似。共振所致的不稳定性在改变量予理论的表述中同样扮演着一种基本角色。
IV
在量子力学中,我们碰到了一个很奇怪的情况。众所周知,这一理论在它的所有预言方面都取得了引人注目的成功。然而,量子力学的表述完成已有 60多年的历史,但有关其含义和范围的讨论依然热烈�