心理学的故事6-第3章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
事有奇巧——也许可说是不同思想的互相滋润——这与最近的大脑研究结果十分相符。最新的大脑研究显示,在心理活动中,神经脉冲不是沿单向通道从一个神经元向另一个神经元前进的,它们是通过多种内部交流电路的同时激发而自发产生。大脑不是一个串行处理器,而是一台庞大的并行处理器。
与这些发展相匹配的是,计算机科学家们一直在创立一种新的计算机建筑模式,连锁和内部交流处理器可以并行工作,以极复杂的方式影响彼此的操作,可以比串行计算机更接近大脑和思维的运作。这种新的计算机建筑不是以大脑的神经元网络为模式的,因为它们当中的大多数仍然没有绘制成图,也太复杂了,复杂得无法复制,可是,它的确可以用自己的方式进行并行处理。
这三种发展的技术细节不在本身的范围之内。可是,它们的意义和重要性却是本书必须重视的。让我们来看看可以怎样利用这些东西。
新模式
一位法国数学家亨利·彭加勒1908年花了15天的时间想研究出法奇森函数理论,但没有成功。他接着放下工作进行一项地质探险活动。正当他上汽车与一位同行的旅行者谈话时,答案突然出现在他脑海里,非常清晰,毫不含糊,他甚至没有中止自己的谈话以便验证这个理论。当他后来去验证时,答案证明是正确的。
创造力的年鉴里满是这样的故事;这表明,思维可以同时进行两种(或者更多)思索,一种是有意识的,另一种是无意识的。传说不是科学证据,但是,在认知革命的早年,好多种对注意力进行的实验的确证明,思维不是一种单一的串行计算机。
这样的实验中最出名的一项是在1973年进行的。实验者詹姆斯·拉克纳和梅里尔·加勒特告诉受试者们戴上耳机,只注意左耳听到的东西,而不管右耳听到的内容。他们的左耳内听到的是一些含义模糊的句子,比如:“这位军官弄出火苗,示意进攻”;而同时,有些人在右耳却可以听到一个句子,可以清楚地解释一个模糊的句子,如果他们注意听的话。(“他把灯熄掉。”)而其它一些人听到的却是一些不相关的句子。(“红人队今夜要连赛两场。”)
事后,没有哪一组能够说出他们的右耳听到了什么。可是,当问及含义模糊的句子的意义时,那些用右耳听到不相关句子的人被分成两组了,一组是听到含义模糊的句子后说是扑灭火苗,另一组是听到句子后说是弄出火苗来。大多数听到过解释性句子的人都说是扑灭了火苗。很明显,解释性的句子被同时和无意识地与模糊的句子一起处理了。
这是好多理由中的一个理由,说明70年代为什么会有一些心理学家开始提出一种假设,说思维不是串行处理的。另一个原因是,串行处理不能解释大部分的人类认知过程,神经元太慢了。它是以毫秒进行操作的,因此,发生在一秒左右时间内的人类认知过程只能补偿不到100个串行步骤。很少有过程是如此简单的,而许多过程,包括知觉、回忆、语音读出、句子理解和“配对”(面孔辨认模式)在内,都要求大得多的数字。
到1980年左右,一系列心理学家、信息理论家、物理学家和其他一些人开始开发详细的并行处理系统工作模式的理论。这些理论特别专业,涉及高等数学、符号逻辑、计算机科学、概要理论和其它的神秘莫测的东西。可是,这场运动的领袖之一大卫·鲁麦哈特最近以简单的话,总结了鼓励他和15位同事开发出自己的“并行分配处理”(PDP)理论的那种思想:
尽管大脑的元件很慢,可它们的数量庞大。人脑装有数十亿这样的处理元件。它不是组织许多串行步骤的计算,如我们在一些步骤很快的系统中所看到的一样,人脑一定是在用许许多多的单元以协作和并行的方式执行它的活动。除开其它的以外,这些设计特性我相信会导致对计算的总体的组织,它与我们已经习惯的方式一定有很大的不同。
PDP还在对信息如何存储的解释上面与当时使用的计算机比喻有很大的不同。在计算机中,信息的存储是以其晶体管的状态保留下来的。每只晶体管要么是开着,要么是关闭的(代表0和1),一连串的0和1代表用符号表示的各种各样的信息的数字。当计算机运行时,电流保持这些状态和信息,当你关掉机器时,一切就会丢失。(依靠磁盘进行永久存储完全是另一码事;磁盘在操作系统之外,正如书面的记事薄处于大脑之外一样。)大脑不可能是按这种方式存储信息的。一方面,神经元不可能是开或闭的状态,它会从其它成千上万的神经元中增多输入,在到达一定量的激发时,会把一个脉冲传送到其它神经元中去。可是,它保持激发状态的时间不会超过几分之一秒,因此,只有很短时的记忆是通过神经元状态存储起来的。而且,由于记忆在大脑因为睡眠或者因为麻醉而处于无意识状态时不会丢失,事情一定是,大脑中的长期存储一定是以其它的某种方式获取的。
这个因为大脑研究而获得的新观点是,知识不是以神经元的状态而存储的,而是通过经验形成的神经元之间的连接形成的,或者,如果是机器,就是在一种并行分配处理器的“单元”之中。如鲁麦哈特所言:
几乎所有的知识都包含在执行任务装置的结构之中……它就装在这个处理器本身里面,直接决定处理的途径。它是通过对连接的调谐获取的,因为这些东西就在处理中使用,而不是作为说明性的事实形成和存储起来的。
这种新的理论相应地也就称作“连接主义”,这是当前认知学说中第一号新词。过世的艾伦·纽厄尔不久前说,连接主义者认为他们的学说是认知心理学的新范式,他们的运动是第二次认知革命。
鲁麦哈特和两位同事划的一张图可以使PDA学说更清楚明白一些,如果你愿意花几分种时间分析一下的话。它不是大脑某块组织的细图,可是理论化的连接主义者所认为的网络图的一部分:
连接主义者所认为的网络假想图例:
第1到第4单元接受外部世界的输入(或者这个网络的其它部分),加入来自第5到8单元输出的反馈。这些单元之间的连接是由没有标上数字的圆圈象征性地指示出来的:打开的圆圈越大,连接越强,填满的圆圈越大,受抑制越强,传递的干扰就越大。因此,第1单元不影响第8单元,但会影响第5,6和7单元,影响的程度各个不同。第2,3或者4单元都影响第8单元,影响的程度很不相同,而第8单元反过来也向输入的单元发出反馈,对第1单元的影响几乎没有,对第3和4单元的影响很小,对第2单元的影响极大。所有这些都是同时进行的,并得出一个输出排列,与信号过程和并口设计中的信号输出形成对照。
尽管鲁麦哈特及其同事说,“PDP模式的吸引力毫无疑问会因为其生理可行性和神经灵感而得到极大的加强”,但是,图中的单元不是神经元,其连接也不是突触连接。这个图代表的不是一种生理的存在,而只是里面发生的事情;大脑的突触和这个模式的连接是以不同方式运作的,禁止某些连接,而同时又加强另外一些连接。在两种情况下,这些连接是这个系统知道的东西,也是它对任何输入作出的反应。
这里有一个简单的图示:在这幅图中,被墨迹部分盖住的是什么字母?
你可能立即会说,被盖住的这个字是RED(红色)。可是,你怎么知道的?盖住的每个字母都有可能是别的字母,而不是你所认为的那一个。
鲁麦哈特和杰伊·麦克莱兰德对你的猜技是这样解释的。第一个字母里面的竖线是输入你的认知系统的一个输入,它与存储着R,K和其它字母的那个单元有很强的联系;斜线连接着R,K和X。另一方面,看见这些线条中的每一根并没有跟——人们也可以说禁止跟——代表圆角字母如C或者O的单元连接起来。同时,你从第二个字母中看到的东西与登记着F和E的单元有强烈的联系,因为经验已经确立了RE但没有把RF当作一个英语单词的开始。以此类推。许多连接都在同时并行操作,它们使你能够立即看到RED这个词,而不是任何别的词。
在更大的一个范围里来说,信息处理的连接主义模式与认知心理学研究中其它开创性发现的成果十分吻合。比如,我们可以考虑一下图39中的语义记忆力网络中已知的东西。网络中的每一个结点——比如,“鸟”、“金丝鸟”和“歌唱”,都对应于某个连接主义模块,有点像最后一个图中全盘的排列,但也许是由成千上万个单元而不是这八个单元构成的。想象一下,足够多的该类单元模块会登记下存储于大脑中的所有知识,每个模块都与相关的模块有好几百万种连接,而且……可是,这种任务对于想象来说的确是太浩大的一个工程。连接主义者的思维建筑不再有可能把它整个的图景像表现宇宙结构一样表现出来。
连接主义模式是对实际大脑结构和功能的强烈类比。弗朗西斯·克里克曾因与人共同发现了DNA结构而分享了诺贝尔奖,现在又在索尔克研究院研究处于前沿阵地的神经科学,他说,大脑的概念作为一个复杂的大型并列处理器层次结构,“几乎可以肯定地说是沿着右边的线路前进的。”保尔·切尔奇兰和帕特里夏·切尔奇兰都是认知科学中的哲学家,他们总结当前的大脑结构知识时说,大脑的确是一个并行机器,“信号是同时在成百上千万不同的通道中进行处理的”。神经元的每一种集合都会向其它集合发送成百上千万的信号,并从这里接受返回信号,用以修正其这种或那种输出。正是这些反复不断的连接模式才“使大脑成了一台真正充满动力的系统,它连续不断的行为既十分复杂,而在某种程度上又不依赖于其周边的刺激”。因此,笛卡儿才有可能整个早晨躺在床上胡思乱想,正如许多心理学家后来也如法炮制的一样。
也许,最了不起的发展是计算机与思维之间的关系的变化。一代人之前,好像是说计算机是一种模式,通过它,推理的思维可以被理解。现在,这个秩序反过来了。会推理的思维是一个模式,通过这个模式,更聪明的计算机就可以建成了。最近几年,计算机工程师们一直在设计和建造并行计算机,其线路的连接将会使64000个处理单元同时操作,并彼此发生影响。同时,人工智能研究者也在编写程序,使其能模拟小型神经网络的并行处理,这种模拟相对于约1000个神经元。他们的目的是多重的:要创造比基于串行处理更接近聪明一些的智能程序,要编写出能模拟假设的心理过程的程序,这样,它们就可以在计算机上进行测试。
这是一个很好的嘲讽:使思维成为可能的大脑到头来成了一种机器的模型,而这种机器一向被认为比大脑聪明一些,这个模型是如此复杂,如此繁锁,以致于目前只有计算机才能干好这件事,只有计算机才能处理对它进行的微型模拟。
如最伟大的的赞美诗作者大卫在25个世纪以前,在认知革命和计算机时代之前所赞叹的:“我要称赞您;因为我是在惶恐中诞生,我乃