科学发现的逻辑 作者:波珀-第25章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
希蛴型贫希╰here-is-conse-quences)]或(b)它们本身是单向可证伪全称陈述'所有…陈述(all—statements)'的推断。
可能性(b)对于弄清概率陈述和基础陈述之间的逻辑关系鲜有帮助:一个非可证伪陈述,即一个说得很少的陈述能够属于可证伪的、因而说得更多的陈述的推断类,这是非常明显的。
对我们意义更大的是可能性(α),它无论如何不是没有意义的,并且事实上结果证明对我们分析概率陈述和基础陈述之间关系是基本的。因为我们发现能够从每一个概率陈述中演绎出无限类的存在陈述,但反之不然。(因此概率陈述断言的比任何这些存在陈述断言的更多。)例如,设p是对某一二择一假说性估计的概率(并设0≠p≠1);那么我们能从这个估计中演绎出例如1和0都将出现在这序列的存在推断。(当然也还有许多远不是那么简单的例子——例如,会出现与p的离差仅为一非常小的量的节段。)
但是我们从这个估计中能演绎出的多得多;例如“一遍又一遍地”出现一个具有性质“1”的元素和具有性质“0’的另一个元素;那就是说,在任何元素x之后,在序列中会出现一个具有性质“1”的元素y,并且也出现一个具有性质“0”的元素x。这种形式的陈述(“对于每一个x有y具有可观察的、或外延上可检验的性质B”)既是不可证伪的——因为它没有可证伪的推断——又是不可证实的——由于使之成为假说性的“所有”或“对于每一个”。虽然如此,它能够得到更好地或不那么好地“确证”——指我们可以证实它的许多或很少存在推断,或者不能证实它的存在推断;因此它与基础陈述处于似是概率陈述特有的关系中。上述形式的陈述可称为“全称化的存在陈述”或(全称化的)“存在假说”。
我的主张是,概率估计对基础陈述的关系,以及这些估计或多或少得到很好“确证”的可能性,考虑到这一事实就能理解:存在假说在逻辑上可从所有概率估计中演绎出来。这对概率陈述本身是否可有存在假说的问题是有启发的。
一切(假说性的)概率估计蕴含着这样的推测:所说的经验序列几乎是似机遇和随机的。这就是说,它蕴含着概率计算公理的(近似的)可应用性,以及真理性。所以,我们的问题就是这些公理是否代表我所说的“存在假说”的问题。
如果我们检查一下第64节中提出的两个要求,那么我们发现随机性要求实际上具有存在假说的形式。另一方面,惟一性要求则没有这种形式;它不可能有这种形式,因为这种形式的陈述“只有一个……(There is only one……)”必然具有全称陈述的形式。(可译为“至多一个……”或“所有……是同一的”。)
在这里我的论点是,正是概率估计的(可称之为的)“存在成份”,因而正是随机性的要求,概率估计和基础陈述之间才建立起一种逻辑关系。因此,惟一性的要求,作为全称陈述,没有任何外延的推断(extensional consequences)。具有所要求性质的p的值存在这一点确定能够在外延上得到“确证”——虽然只是暂时地;但是只存在一个这样的值这一点则不能。这后一个全称的陈述可能在外延上有意义,仅当基础陈述能够同它发生矛盾时;这就是说,仅当基础陈述能够肯定存在的值不止这一个时。由于它们不能够(因为我们记得不可证伪性与二项式有密切关系)做到这一点,惟一性的要求必然在外延上是没有意义的。
这就是为什么如果我们从系统中消去惟一性要求,概率估计和基础陈述以及前者的分级“可确证性”之的分级之间所有的逻辑关系不受影响的缘故。在这样做时,我们能够给予系统以纯粹存在假说的形式。但是我们因此不得不放弃概率估计的惟一性,并且因而(就惟一性而言)获得某种不同于通常概率计算的东西。
所以惟一性的要求显然不是多余的。那么它的逻辑功能是什么?
虽然随机性要求有助于确立概率陈述和基础陈述之间的某种关系,惟一性要求调节着各种概率陈述本身之间的关系。没有惟一性要求,作为存在假说的某些陈述,可以从其他陈述中推导出来,但是它们决不可能彼此矛盾。只有惟一性的要求才保证,概率陈述能彼此矛盾;因为根据这个要求它们获得其成分为一个全称陈述和一个存在假说的合取形式;并且这种形式的陈述能够彼此处于同样基本的逻辑关系中(同义、可推导性、相容性和不相容性),正如任何理论——例如一个可证伪的理论——的“正常的”全称陈述那样。
如果我们现在考虑收敛公理,那么我们发现,在它具有一种不可证伪的全称陈述的形式这一点上它类似惟一性要求。但是收敛公理要求的比惟一性要求的更多。然而这种附加要求也不可能有任何外延上的意义;此外,它没有逻辑或形式的意义,而只有内包上的意义:它要求排除所有没有频率极限的用内包定义的(即数学的)序列。但是从应用观点看,这种排除证明甚至在内包上也没有意义,因为在应用概率论中我们当然不涉及数学序列本身,而只涉及经验序列的假说性估计。所以排除没有频率极限的序列,只能用来告诫我们不要把那些经验序列着作为似机遇或随机的,对于那些经验序列我们假定它们没有频率极限。但是对这种告诫,我们能够采取何种可能的行动?鉴于这种告诫,我们应该容许或避免哪类关于经验序列可能收敛或发散的考虑或推测,保证收敛标准同发散标准一样可应用于这些序列?一旦摆脱了收敛公理,所有这些尴尬的问题也就消失了。
因此我们的逻辑分析使系统各部分的要求的形式和功能都一目了然,并且表明反对随机性公理和支持惟一性要求的理由是什么。同时可判定性问题似乎变得越来越重要。并且虽然我们不一定称我们的要求(或公理)“无意义”,看来我们被迫把它们描述为非经验的。但是概率陈述的这种描述——不管我们用什么话来表达它——是否同我们研究的主要思想相矛盾呢?
67.思辨形而上学的概率系统
概率陈述在物理学中最重要的用处是这样:某些物理学规律性或可观察的物理效应被解释为“宏观定律”;也就是说,它们被解释或说明为大数现象,或假说性的、不能直接观察的“微观事件”的可观察结果。宏观定律用下列方法从概率估计中演绎出来:我们证明,与所说的观察到的规律性一致的观察结果,应该期望其概率十分接近于1,即其概率与1的离差为一个能达到按我们选取的那样小的量。当我们已证明这一点时,那么我们就说,我们已经用我们的概率估计把所说的可观察效应“解释”为一个宏观效应。
但是如果我们以这种方法使用概率估计来“解释”可观察的规律性而不采取特定的预防措施,那么我们会马上陷入某些思辨,根据一般的用法,完全可以把它们描述为思辨形而上学的典型。
因为概率陈述是不可证伪的,以这种方法用概率估计“解释”我们喜欢的任何规律性必定总是可能的。以万有引力定律为例。我们可以下列方法设想出一些假说性的概率估计来“解释”这个定律。我们选择某类事件作为基本事件或原子事件;例如某一小粒子的运动。我们也选择某方面作为这些事件的主要性质;例如粒子运动的方向和速度。于是我们假定这些事件显现出似机遇的分布。最后我们计算出所有的粒子在某一有限的空间区域内,在某一有限的时期内——某一“宇宙期”——将以规定的精确性(附带地说,以万有引力定律要求的方式)运动的概率。计算出的概率当然将十分小;实际上小得微不足道,但是仍然不等于零。因此我们可以提出这样的问题:这个序列的某个n-节段得有多长,或换言之,整个过程必须假定有多长,我们才可期望这种宇宙期出现的概率接近1(或与1的离差不超过某一任意小的值E),在这宇宙期内,作为偶发事件积累的结果,我们的观察将会完全与万有引力定律一致。对于任我们选取的接近于1的任何值,我们获得一个确定的、虽然极端大的有限数。于是我们可以说:如果我们假定序列的节段有这十分大的长度——或换言之,“世界”延续得足够长——那么我们的随机性假定使我们能够期望出现一个方有引力定律似乎也适用的宇宙期,虽然“实际上”除了随机发散外什么也没有出现。借助某种随机性假定,这类“解释”可应用于我们选取的任何规律性。事实上,我们可用这个方式把我们整个世界,以及它的所有被观察到的规律性,“解释”成随机混沌中的一个阶段——纯粹偶然巧合的一种积累。
我认为很清楚,这类思辨是“形而上学的”,它们对科学没有任何意义。并且同样清楚的是:这个事实同它们的不可证伪性——我们能在任何时候和任何条件容许它们这个事实是有联系的。因此我的划界标准似乎同“形而上学的”一词的一般用法是完全一致的。
所以涉及概率的理论,如果它们不加特定预防措施而加以应用,就不应被认为是科学的。如果它们应在经验科学的实践中有用处,我们就必须排除它们的形而上学用法。
68.物理学中的概率
可判定性困难的问题只是方法论的,不是物理学的。如果要求提出一个实践上可应用的概率概念,物理学家也许会提供某种物理学的概率定义,其思路如下:有些实验,即使在受控条件下进行也得出不同的结果。在某些这类实验——“似机遇的”实验,例如用硬币做掷猜——的情况下,经常重复导致具有相对频率的结果,进一步重复,这些相对频率越来越逼近某个固定值,我们可称之为所说事件的概率。这个值是“……可用经验通过一长系列实验确定到任何逼近度”;顺便说,这说明为什么证伪一个假说性的概率估计是可能的。
数学家和逻辑学家会对根据这些思路下的定义提出异议,尤其是下列异议:
(1)这个定义与概率计算并不一致,因为根据Bernoulli定理,只有几乎所有非常长的节段才是统计学上稳定的,即其行为仿佛是收敛的。由于这个理由,概率不能用这稳定性,即用拟收敛行为来定义。因为“几乎所有”一词——它应该出现在定义中——本身只是“十分可几的”一个同义语。因此这定义是循环的;这个事实容易通过去掉“几乎”一词隐避起来(但不能取消)。这就是物理学家的定义所做的事;所以这是不能接受的。
(2)什么时候应说一系列实验是“长的”?不提供一个应称之为“长的”标准,我们不能知道我们何时,或是否已达到逼近这个概率。
(3)我们如何能知道所需要的逼近实际上已达到?
虽然我认为这些异议是合理的,然而我认为我们能够保留物理学家的定义。我将通过上节概述的论据来支持这种见解。这些论据表明当概率假说被允许无限应用时,它们就失去所有信息内容。物理学家决不会以这种方式使用它们。我将遵循物理学家的范