科学发现的逻辑 作者:波珀-第23章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
阂桓鰊节段有性质“△p”,当且仅当'…p'<δ时;换言之,节段具有性质‘△p’。现在Bernoulli定理回答了频率或概率值的问题,在αn序列内这种节段——具有性质△p的节段的值的问题;因此它回答了αnF(△p)值的问题。
人们在直观上可以猜测:如果值δ(δ>0)是固定的,如果n增加,那么具有性质△p的这些节段的值,因此αnF(△P)的值,也将增加(并且它的增加将是千篇一律的)。Bernoulli的证明(在任何一本概率计算教科书中都可以找到这种证明)接着下去便是借助二项式公式来评价这种增加。他发现如果n的增加没有极限,αnF(△P)值便逼近最大值1,不管&的固定值有多少。这可用下式来表示。
(1)
F(△p)=1(对任何△p值)
这个公式从改变毗邻节段序列的第三个二项式公式而来。对于交迭节段的序列,类似的第二个二项式公式用同样的方法直接导附相应的公式。
(2)
F’(△p)=1
这个公式对于交迭节段序列以及从它们之中作正态顺序选择是正确的,因此对于具有后效的序列(Smoluchowski曾研究过这些序列)也是正确的。公式(2)本身产生(1),假如所选的序列不交迭,所以自由度为n。(2)可描述为Bernoulli定理的一种变式;而我在这里将要就Bemoulli定理所说的话经过必要的修正(mutatis mutandis)以适用于这种变式。
Bernoulli定理,即公式(1),可用下面的话表示。让我们称从一随机序列α中选择的长度固定的一个长的有穷节段为一“中等样本”(fair sample),当且仅当在这个节段内1的概率,即在随机序列内1的概率值与p的离差只有某一小的固定的分数(我们可以自由挑选这个分数)。因此我们可以说,只要我们使这些节段有足够长,偶然碰到一个中等样本的概率如我们所喜欢的那样逼近于1。
在这个表述中,“概率”(或“概率值”)一词出现两次。在这里如何解释或翻译它?在我的频率定义的意义上,这词不得不翻译如下(我将“概率”一词译为频率语言的两种译法用黑体表示):所有足够长的有限节段中绝大多数有“中等样本”;即它们的相对频率与该随机序列频率值p的离差为一任意固定的很小的量;或简言之:频率p近似地实现在几乎所有足够长的节段中。(我们如何达到p值与我们现在的讨论是无关的;比方说它可以是一种假说性估计的结果。)
记住Bernoulli频率αnF(△p)一成不变地随节段的长度n的增加而增加,一成不变地随n的减少而减少,所以,相对频率值在短的节段中实现是比较罕见的,我们也可说:
Bernoulli定理说明,“绝对自由的”或似机遇的序列的短节段经常表现在与p有比较大的离差,因此有比较大的涨落,而较长的节段,在大多数情况下,将表现出随长度的增加与P的离差越来越小。结果,在足够长的节段中大多数离差将变得如我们希望的那样小;换言之,大的离差将变得如我们希望的那样罕见。
因此,如果我们取随机序列的一个十分长的节段,为了通过计算或也许利用其他的经验的和统计的方法,求在它的子序列内的频率,那么在大多数情况下我们将得到如下结果。有一个特征性平均频率,使整个节段中以及几乎所有的长的子序列中,相对频率与这个平均值的离差很小,如果我们挑选的子节段越短,较小的子节段的相对频率与这个平均值的离差就越大和越经常,这个事实,即有穷节段这种可在统计学上得到确定的行为,系指它们的“拟收敛行为”;或系指这样的事实:随机序列在统计学上是稳定的。
因此,Bernoulli定理断言,似机遇序列的节段较小,经常表现为大的涨落,而大节段总表现恒定或收敛;简言之,我们在小节段中发现无序和随机,在大节段中发现有序和恒定。“大数定律”式所指的正是这种行为。
62.Bernoulli定理和概率陈述的解释
我们刚刚看到,用言语表述的Bernoulli定理中“概率”一词出现了两次。
频率理论家在两种情况下根据它的定义翻译这个词没有困难:他能对Bernoulli定理和大数定律提供一个清楚的解释。主观理论的拥护者也能以它的逻辑形式做到这一点吗?
想把“概率”定义为“理性信仰程度”的主观理论家,当他把“……的概率如我们希望的那样逼近1”这些话解释为“……几乎是确定无疑的”时,他前后完全一致,并且有权这样做。但是当他继续说:“……相对频率与它最可几的值p 的离差小于一定量……”,或用Keynes的话说,“事件出现的比例与最可几的比例p的离散小于一定量……”时,他只不过模糊了他的那些困难。这听起来似乎蛮有道理,至少乍一听来是这样。但是如果在这里我们也把“可几的”(有时省略)一词,用主观理论的意义加以翻译,那么整个问题变成这样:“相对频率与理性信仰程度p值的离差小于一定量几乎是确定无疑的,”我认为这是十足的废话。因为相对频率只能与相对频率作比较,只能与相对频率有离差或没有离差。很清楚,在演绎Bernoulli定理之后,把一个不同于演绎之前给予p的意义给予它是不允许的。
因此我们看到主观理论不能用统计学的大数定律来解释Bernoulli定理。统计定律的推导只有在频率理论的框架内才有可能。如果我们从严格的主观理论出发,将永远达不到统计陈述——即使努力填补同Bernoulli定理之间的鸿沟也不能达到。
63。Bernoulli定理和收敛问题
从认识论观点看,我对上述大数定律的演绎是不满意的;因为收敛公理在我们的分析中所起的作用是很不清楚的。
实际上通过把我的研究限于具有频率极限的数学序列已不言而喻地引入了这类公理(参阅第57节)。结果甚至容易使人认为我们的结果——大数定律的推导——是无关紧要的;因为“绝对自由”的序列在统计学上是稳定的这一事实可被认为是它们的收敛所蕴含的,而它们的收敛如果不是不证自明也是不言自明地被假定的。
但是正如von Mises已清楚地表明的那样,这个观点是错误的。因为有些序列满足收敛公理,虽然Bernoulli定理对它们不适用,因为具有频率接近1的任何长度的节段,出现在与p有一定程度离散的频率中。(极限p在这些情况下的存在是由于这个事实:虽然离散可无限增加,但它们相互抵销。)这些序列看起来仿佛它们在任意大的节段中是发散的。即使相应的频率序列事实上是收敛的。因此大数定律根本不是收敛公理的无关紧要的推断,而且,这个公理对于推导大数定律完全不充分。这就是为什么我对随机公理的修改,“绝对自由”的要求是不可缺少的。
然而,我们的理论重建,提示了这样一种可能性:大数定律也许是独立于收敛公理的。因为我们已经看到,Bernoulli定理是直接从二项式公式中得出的;此外,我已证明,可为有穷序列推导出第一个二项式公式,因此当然无需任何收敛公理。还必须假定的一切是参考序列α的自由度至少是n-1;这是一个从中得出特殊乘法定理的可靠性以及第一个二项式公式的可靠性的假定。为了过渡到极限,为了获得Bernoulli定理,只需假定我们使n如我们希望的那样大。因此就能看出,Bernoulli定理大概是对的,即使对于有穷序列也是如此,如果对于一个足够大的n它们的自由度为n的话。
所以看来Bernoulli定理的演绎并不依赖于假定频率极限存在的公理,而是仅依赖于“绝对自由度”或随机性。极限概念仅起次要的作用:它用来把相对频率的概念(在第一个例子中给它下定义只是为了有穷类,没有它,n…自由度的概念就不能提出)应用于能无限延伸的序列。
此外,不应忘记,Bernoulli本人是在经典理论的框架内演绎他的定理的,这个理论不包含收敛公理;也不应忘记,作为频率极限的概率定义只是经典形式体系的一种解释——而且不是惟一可能的一种解释。
我将试图用除n-自由度(应适当地加以定义)外无需假定任何东西就可推演出这个定理来证明我的推测——Bernoulli定理独立于收敛公理。并且我将试图证明它甚至适用于其主要性质并不具有频率极限的那些数学序列。
只要能够证明这一点,我就会认为我之推演出大数定律从认识论家的观点来看是令人满意的。因为似机遇经验序列证明,我已描述为“收敛”或“统计学上稳定的”那种特殊行为,是一个“经验事实”——或至少有时人们这样告诉我们(参阅第61节)。通过用统计方法记录长节段的行为,人们能够确定相对频率越来越逼近一个限定的值,相对频率在其中涨落的间隔变得越来越小。对这种所谓的“经验事实”,已进行过如此多的讨论和分析,确实往往认为它是大数定律的经验验证,对这种“经验事实”可以从不同角度来看。具有归纳主义倾向的思想家大多数认为它是基本的自然律,不能还原为任何更简单的陈述;认为它是必须完全加以接受的我们世界的特性。他们认为以适当形式——例如以收敛公理的形式——表示的这个自然律应该作为概率论的基础,从而使概率论具有一门自然科学的性质。
我对这种所谓“经验事实”的态度是不同的。我倾向于认为,它可还原为序列的似定律性质;可从这些序列的自由度为n的事实中推导出来。我认为Bermoulli和Poisson在概率论领域的成就正是在于他们发现了一种方法以表明这种所谓“经验事实”是重言式,表明从小规模的无序(假如它满足表述得合适的n-自由度条件)合乎逻辑地得出一种大规模的稳定性秩序。
如果我们能够无需假定收敛公理而演绎出Bernoulli定理,那么我们就可把大数定律的认识论问题还原为一个公理独立性问题,因而还原为一个纯粹的逻辑问题。这种演绎也说明为什么收敛公理在各种实际应用(试图计算经验序列的近似行为)中起了很好的作用。因为即使对收敛序列的限制结果弄清是不必要的,利用收敛数学序列来计算经验序列的近似行为(它根据逻辑上的理由在统计学上是稳定的)肯定不是不合适的。
64.收敛公理的排除“机遇理论基本问题”的解决
迄今频率极限除了具有提供一个可应用于无穷序列相对频率的明确概念外,在我们的概率论的重建中没有其他功能,因此我们可以借助它来定义(不受后效约束的)“绝对自由度”。因为正是相对频率被要求不受根据先行者作出选择的影响。
我们早就把我们的研究限制在具有频率极限的二择一,因此不言而喻地引入了收敛公理。现在,为了使我们摆脱这个公理,我将摆脱这个限制,而不用任何其它限制来代替它。这就是说我将不得不建构一个频率概念,它能接管被排除的频率极限的功能,并可应用于所有的无穷参考序列。
满足这些条件的一个频率概念是相对频率序列聚点