物理学的进化-第22章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
些构成放射性物质的砖头,即基本粒子,有时会以接近光速的速度抛射出来。根据现在已被大量实验确认的见解,元素的原子,例如镭的原子,具有非常复杂的结构,而放射性蜕变只是证明原子是由比较简单的砖头,即基本粒子构成的现象中的一种。
利用巧妙而复杂的实验,我们可以发现这些粒子如何抵抗外力的作用。实验表明,这些粒子所产生的抗力与速度有关,恰如相对论所预见的一样。在许多其他的例子中,也可以发现抗力与速度有关,相对论与实验是完全相符的。这里我们又一次看到科学的创造性工作的重要特色,即先由理论预言某些论据,然后由实验来确认它。
这个结果暗示着一个更为重要的推广。一个静止的物体有质量,但没有动能(就是运动的能量)。一个运动的物体既有质量又有动能,它比静止的物体更强烈地抵抗速度的改变,运动物体的动能好像增加了它的抵抗作用。假如两个物体有同样的静止质量,则有较大动能的一个,对于外力作用的抗力也较强。
设想一个装着球的箱,箱与球在我们的坐标系中都是静止的。要使它运动,要增加它的速度,都需要力。假如球在箱中很快地、像气体的分子一样,以接近光速的平均速度朝各个方向运动,那么用相同的力在相同的时间间隔内是否能产生相同的速度的增加呢?现在必须用更大的力,因为球的动能的增加,加强了箱的抵抗力。能,至少是动能,它阻止运动的作用和有重力的质量所起的作用是一样的。这对于所有各种能来说也都是对的吗?
相对论从它的基本假设出发,对这个问题推论出一个明白而确切的答案,而且是一个定量性质的答案:所有的能都会抵抗运动的改变;所有的能的作用都和物质的一样;一块铁在炽热时称起来比冷却时要重一些;从太阳发射出来的通过空间的辐射含有能,因此也有质量;太阳与所有发出辐射的星体,都由于发出辐射而失去质量。这些具有普遍性的结论是相对论的一个重要的成就,而且与所有经过考验的论据都相符合。
经典物理学介绍了两种物质,即质与能。第一种有重力,而第二种是没有重力的。在经典物理学中我们有两个守恒定律,一个是对于质的,另一个是对于能的。我们已经问过,现代物理学是否还保持着两种物质和两个守恒定律的观点。答案是:否。根据相对论,在质量与能之间没有重要的区别。能具有质量而质量代表着能量。现在只用一个守恒定律,即质量…能量守恒定律,而不用两个守恒定律了。这种新的观点在物理学的进一步发展中已证明是很成功的。
能是具有质量而质量又代表能量的这一论据,在过去为什么一直没有被人注意到呢?一块热的铁称起来是不是会比一块冷铁重一些呢?现在对于这个问题的答案是“是的”,而过去(见“热是物质吗”一节)的答案是“不是的”。从那里开始到现在为止所讲的两个答案之间的一切内容,自然还不足以解决这个矛盾。
我们在这里所遇到的困难和前面所遇到的困难是属于同一种性质的。相对论所预言的质量的变化小到不能测量的程度,甚至最灵敏的天平也不能直接测量出来。要证明能不是没有重力,可以用许多可靠的,但是间接的方法来实现。
直接证据之所以缺乏,是因为物质与能之间的相互转换的兑换率太小了。能和质量的比较,犹如贬值的货币和高价值的货币相比较。举一个例子就可以把它弄清楚。能够把3万吨水变为蒸汽的热量称起来只有1克重。能之所以一直被认为是没有重力的,无非是因为它的质量太小了。
旧的能与物质之间的关系是相对论的第二个祭品,第一个祭品是传播光波的介质。
相对论的影响远远超过了由此而兴起相对论的那个问题的范围。它扫除了场论的许多困难和矛盾;它建立了更普遍的力学定律;它用一个守恒定律来代替两个守恒定律;它改变了我们旧的绝对时间的概念。它的有效性不止限于物理学的范围之内,它已成为适用于一切自然现象的普遍框架。
时-空连续区
“法国革命于1789年7月14日在巴黎起事”,这句话说出了一个事件的空间和时间。对于一个初次听到这句话并不懂“巴黎”是什么意思的人,你可以告诉他:这是位于我们地球上东经2度和北纬49度的一个城市。用这两个数就能够确定这个事件发生的地点,而“1789年7月14日”则是发生事件的时间。在物理学中准确地表征一个事件发生的地点与时间比历史更为重要,因为这些数据是定量描述的根本。
为简单起见,我们在前面只考察了直线运动,我们的坐标系是一根有起点而无终点的坚硬的杆,我们暂且保留这个限制。我们在杆上取不同的点,它们的位置都只能够用一个数来表征,即应用点的坐标。说一个点的坐标是7.586米,就是说,它与杆的起点的距离为7.586米。反过来说,假如有人给我一个任意的数和一个量度单位,我总能够在杆上找到和这个数相对应的一点。我们可以说,杆上一个确定的点与一个数对应,一个确定的数则与一个点相对应。数学家将此表述为杆上所有的点构成了一个一维连续区。在杆上每一给定点的无论怎样近的地方都有一个点,我们在杆上可以用许多任意小的距离来把两个相距遥远的点连接起来。连接相距遥远的两点的各个距离可以任意地小,这便是连续区的特征。
再举一个例。假设有一个平面,你若喜欢举一件具体的东西作例,可改设有一个长方形的桌面(图58)。桌面上一点的位置可以用两个数来表征,而不像前面那样只用一个数来表征。这两个数便是这个点与桌面两条相互垂直边的距离。和平面上每一点相对应的不是一个数而是一对数,一个确定的点都有一对数跟它相对应。换句话说,平面是一个二维连续区。在平面上每一给定点的无论怎样近的地方都有别的点。两个相距遥远的点可以用一根曲线分成的任意小的距离把它们连接起来。这样,用任意小的距离连接两个相距遥远的点,每一点都可以用两个数来代表,这就是二维连续区的特征。
再举一个例,设想你要把自己的房间看作是你的坐标系,也就是你想借助于房间的墙来描述所有的位置。如果一盏灯是静止不动的,这盏灯的位置可以用3个数来描写(图59),两个数决定它与两个相互垂直的墙的距离,第三个数决定它与天花板或地板的距离。3个确定的数与空间的每一点相对应,空间中一个确定的点与每三个数相对应。这可以用下面的一句话来表达,我们的空间是一个三维连续区。在空间每一给定点的非常近的地方还存在着许多点,连接相距遥远的点的距离可以任意地小,而每一个点都用3个数来代表,这就是三维连续区的特征。
但是上面所讲的简直都不是在谈物理学。现在再回到物理学上来,我们必须考察物质粒子的运动。要观察并预言自然界中的现象,我们不仅应考察物理现象发生的位置,还要考察它发生的时间。我们再来举一个很简单的实例。
一个小石子,现在把它看作是一个粒子,从塔上落下来,假设塔高80米。从伽利略时代起,我们就能预言石子开始落下以后在任何时刻的坐标,下面是说明石子在0、1、2、3、4秒时位置的“时间表”。
时间(秒)01234
离地高度(米)807560350
在我们的“时间表”中记载着5个事件,每一个事件用2个数即每一个事件的时间和空间坐标来表示。第一个事件是石子在0秒时从离地80米处的下落。第二个事件是石子与我们坚硬的杆(塔)在离地75米处相重合,这发生在经过1秒之后。最后的事件是石子与地面相遇。
我们可以把这个“时间表”中所得到的知识用不同的方式来表示。比如把“时间表”中的5对数字用平面上的5个点来代表。首先确定一种比例尺,例如,像图60那样,一段线表示20米,而另一段线表示1秒。
然后画两根垂直的线,把水平线作为时间轴,竖直线作为空间轴。我们立刻就看到“时间表”可以用时-空平面中的5个点来表示(图61)。
离空间轴的距离代表“时间表”第一行中所指出的时间坐标,而离时间轴的距离则代表空间坐标。
用“时间表”来表示和用平面上的点来表示,方式虽然不同,但效果完全一样。每一种方式都可以根据另一种作出来。在这两种表示方式之中应选择哪一种,只不过是随人所好而已,因为实际上它们是等效的。
让我们再前进一步。设想有一个更好的“时间表”,它不是记出每1秒的位置,而是记出每1/100秒,或1/1000秒的位置。这样,在我们的时-空平面上便会有许多点。最后,如果对每一时刻记出位置,或者如数学家所说,把空间坐标表示为时间的函数,那么这些点的集合便成为一根连续的线。这样,像图62那样,这个图所代表的不是过去那种零碎的知识,而是石子运动的全部的知识。
沿着坚硬的杆(塔)的运动,也就是在一维空间中的运动,在这里是用二维时-空连续区中的一根曲线来代表的。这个时-空连续区中的每一点都有一对数字和它对应,一个数表示时间坐标,另一个数表示空间坐标。反过来说,在我们的时-空连续区中一个确定的点,与表征一个事件的某一对数字相对应。相邻的两个点代表在稍微不同的两个位置上以及在稍微不同的两个时刻分为两次发生的两个事件。
你或许会用下面的理由来反对我们的图示法:把一个时间单位用一段线来代表,把它机械地和由两个一维连续区构成的一个二维连续区的空间联系起来,是毫无意义的。但是假如你要反对这个办法,那么你便要同样有力地反对许多图示,例如表示去年夏季纽约城的温度变化的图,表示近几年来生活费用变化的图,因为这些例子中所用的都是同一种方法。在温度图中,一维的温度连续区与一维的时间连续区结合成一个二维的温度-时间连续区。
让我们再回到从80米高塔上落下来的粒子问题上。我们把运动画成图是一种很有用的办法,因为它表征着在任何时刻粒子的位置。知道了粒子是怎样运动的,我们就能再一次把它的运动画出图来。我们可以画成两种不同的方式。
我们记得一种是粒子在一维空间中随时间而变化的图,我们把运动画成在一维连续区中连续发生的一系列事件。我们不曾把时间和空间结合起来,我们所用的是动图,在这个图中位置随时间而变化。
但是我们可以把同样的运动用不同的方式加以描画,我们可以把运动考虑为二维时-空连续区中的曲线而构成一幅静图。现在运动已经看成由某种东西来代表,它是存在于二维时-空连续区中的某种东西,而不是在一维空间连续区中变化的某种东西了。
这两个图是完全等效的,爱用这一种或那一种只不过是随人们的习惯与兴趣而已。
以上关于运动的这两种图示法所说的一切都没有对相对论说明什么问题。两种图示法都可以随便使用,不过经