贝壳电子书 > 基础科学电子书 > 黄万里文集 >

第16章

黄万里文集-第16章

小说: 黄万里文集 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



威和中欧高地雨量过多,英、德、波等纬度 55o ,降水年 550  毫米,只供一季已
足,而南欧西班牙可种两季者则欠雨水;也比北美雨雪过多,年只一季,无济于 农者为好。
苏联、美国、加拿大三国耕地面积大,降水量及川流量皆比我国多。但其产
粮地区与我国对比,降水既少,年内分布又较均匀;气温较低,无霜期短,苏、
加年只一熟,美国纬度 37o  以北也只一熟,有效雨量又少,故其水资源或可能供
水量和实耗农业水量都远比我国为少。苏、加大量川流向北冰洋废弃,美国则向
东流入大西洋,秋冬雨雪虽多,但毫无用处。所谓多于我国之雨流都是弃水,而
非水资源。巴西、印尼多热带雨林,耕地较少,虽其雨量流量皆丰富,但其实际
利用的水量很少,不能与我国并论。故按耕地、气候和雨水三条件论农业水资源,
我国在全球之首,所谓第六者'1 ' ,乃指入海的剩余弃水量。
我国雨量流量的最大缺点是年际差异较他国为大,影响到农产年际不稳定。


79




欧美有从河槽水流估计水资源的,这是因为它们在每年只种一季农作用水已
满足的情形下,去考察一些川流是否满足工业和生活用水,特别是当枯水期水质
是否合格。在我国水资源用途是以每年两至三熟的农业为主,这与从河中汲水的 工业和生活用水迥异,问题不能相提并论。
美国东部大陆季风气候和我国相似,自中西部半世纪以来,农业大兴之后,
大片平地机耕成本低廉,是以东西沿海一带农业减退,而工业和生活用水大增。
这样在地区上划分水资源用途,估计用水量比较简明,和我国情形迥异。
在日本估 算 水资源也 是 用前述平 衡 方程的。 苏 人琼译自 日 本水资源 学 术会 
《关于水资源学术会议文献》475 页所载:“日本年降水量 6000 亿吨,其中 2500
亿吨通过洪水损失掉,又 2000 亿吨通过蒸发损失掉,据说实际年可利用量为 1300
亿吨。目前利用水量中,生活用水 100  亿吨,工业用水 150  亿吨,农业用水 500
亿吨。共计 750 亿吨”。这里川流 2500 亿吨是作为弃水损失看待的,不象我国科
学院把它看作是水资源'1'。他们的年用水量仅 1300 亿吨,比我国科学院号称贫乏
的中国水资源年 2600 亿吨的错误值只有一半。


四、关于黄淮海流域水资源问题 
我国淮河以南及西南各省水源丰富,支持现有人口绰绰有余;西北东北则天
寒水少,年仅一熟,地广人稀,口粮稍欠。总的说来,各地在耕地、气候和水源
三方面是配合谐和的,当然,南粮不免北运。惟有黄淮海地区,特别是黄河以北 海河流域缺水最甚,这里的水资源情况还须详细阐明。
黄淮海平原春季干旱,土壤多盐碱化。夏季雨量充沛,遇霪雨兼旬,即可酿
成洪灾。秋季沥雨,洼地成涝。越冬则地冻三尺,植物偃息。凡此四害,以旱盐
为甚,洪涝次之。论者多谓华北缺水,惟有仰给于江水北调。但依水文地理条件
论之,本域气候属半湿润温暖带,纬度 40o  左右,无霜期 220  天,年降水量 600
余毫米,光照充足,平原广大,地下有粗沙区可以储存夏水。小麦利用秋水育苗,
越冬复苏后,春水不足则可抽低地下储水,腾出空间以迎夏雨入渗。夏季雨多,
足供作物需水且有余。这是主水资源的垂直运行。若象欧美各国年只一季作物, 则自然降水就已足用。
为了增产,华北大部分地区力争两熟,因此用水不足。除了存去年夏水于地
下外,还有客水补给:这里西依太行,北仰燕山,南濒黄河,三面可有水自流接
济。卤水则可东排出海。如此优越的水土形势,真是天造地设,为全球所罕见。


80




问题的关键在于将黄河大堤设闸开口,而不设底槛,放水南北分流,淤灌华
北平原。同时抽排卤水,治海治淮,则旱碱洪涝皆得消除。而黄河治理恰恰又正
须分流,以刷深河槽,畅排洪流。当今治河坚持“拦排放”策略,试图由流水挟
沙出海。于是殃成了目前平原缺水缺有机肥,大运河不得通航。历来学者以知识
误国,其贻害之大,益未有甚于此者。黄河郑州以下广大三角洲就是靠它挟沙特 多所淤成,平原地广水少,理应以黄河水为客水资源。


参考文献 
'1' 中国科学院技术科学部水利分组:中国水资源及其利用,1982 年。
'2' 张光斗、陈志恺:关于水资源问题及其解决途径,1989  年中国科学院技术
科学大会报告。
'3' 谢家泽、陈志恺:中国水资源,地理学报,第 45 卷,第 2 期,1990 年。
'4' 黄万里:增进我国水资源利用的途径,自然资源学报,第 4 期,1989 年。




ON THE RELATIONS AMONG PRECIPITATION,
RIVER FLOW AND WATER RESOURCES
Huang Wanli

(Tsinghua University)


Abstract
This paper points out the relations among precipitation; river flow in hydrologic

phenomena  and  the  water  resources  utilized  by  mankind;  presents  a  formula  for

determining  the  quantity  of  water  resources  and  argues  that  China  is  endowed  with

the  most  abundance  of  water  resources  in  the  world  which  meets  the  prehensive

requirements   because   of   the   appropriate   distribution   of   time   and   space。   This   is
against  the  state  published  data  of  2。7×1012 m3   for  the  average  yearly  quantity  of

water  resources  considered  to  be  in  short  and  unappropriately  distributed  in  time  and

space。  The  problem  is  worth  while  for  public  discussions;  as  it  affects  so  much  the

tactics of planning in hydraulic engineering。



81






The Velocity Profile Formula along Section

of Open Channel Flow Determined by the Law of

Maximum Rate of Energy Dissipation


William W。L。 Huang; M。C。E; Ph。D。

Professor Emeritus; Tsinghua University




Synopsis
This  paper  presents  a  formula  of  velocity  profile  along  section  of  open  channel

flow  determined  by  the  law  of  maximum  rate  of  energy  dissipation  proposed  by  the

author in 1975。

The  analysis  partly  follows  the  mixing  length  theory  for  turbulent  flow  in  that

the  length  1  is  a  dimensionless  multiple  of  the  depth  y  of  the  level  of  flow  line;  but
replaces  the  Karman  constant  k=0。4  by  a  variable  η=η(y)  which  varies  from  1  at

the bottom to 0 at the surface of flow。 The total rate of energy reserved in the section

shall invariable be a minimum。

The   calculated   velocity   profile   by   the   proposed   formula   has   been   checked

precisely   by   the   experimental   data   measured   by   the   U。S。   Geological   Survey   in

Denver;  Colorado。  The  discrepancy  of  results  in  using  the  Prandtl…Karman  formula

with the measured data is manifested in parison。


Recapturation of Historical Development
Early  in  the  17th  century  numerous  Italian  and  German  engineers  curiously

believed that the velocity in a vertical counting downward from the surface increased

with the depth even firmed by fallacious experiments。 In 1848; Dupuit developed

from theoretical consideration the equation




82


u = u

max
? (u

max
? y ?

? umin   ?    ?
? h ?
Until  1858;  Bazin;  an  assistant  to  D’ Arcy;  developed  the  parabolic  curve  of  velocity

profile  from  results  of  experiments  in  the  middle  of  a  natural  river。  The  equation

proposed was

2
u ? u
? y ?
    max   = 20?    ?
hJ ? h ?

in which u is the velocity of flow at the depth y; h… the maximum depth; J – the slope。

Later;   Pressey;   in   America;   Jasmund   and   Bolte;   in   Germany;   improved   the

Bazin’s  result  of  the  constancy  of  the  value  20  by  introducing  the  effect  of  the

roughness  of  channel  on  the  increase  of  curvature  of  the  profile。  R。Jasmund  (1893  –

97)   examined   445   velocity   profiles   based   on   his   observations   on   the   Elbe。   He

proposed  four  types  of  curves;  i。e。;  parabolas  with  horizontal  and  vertical  axes;

hyperbola  and  logarithmic  curves  for  trials  in  fitting  the  data;  and  concluded  that  the

latter was the best fit:

u = a + b lg ( y + c )

where a; b; and c are constants for a particular stream。

Not   until   1883;   when   the   essence   of   turbulent   vs。laminar   flows   was   fully

understood  through  the  works  of  O。  Reynolds;  different  formulas  were  developed  for

the   two   regimes。   The   Prandtl…Karman   semi…rational   approach   to   the   logarithmic

formula for turbulent flow has been popularly accepted。

Nevertheless;  the  distribution  of  velocity  along  a  vertical  of  flow  still  remains

void  of  reason。  The  subject;  however;  is  of  wide  interest  to  hydraulics  in  practice;  so

as  to  answer  the  requirement  of  verifying  the  Prandtl…Karman  formula;  as  well  as  to

the  mechanics  of  sediment  transport  which  is  closely  related  to  the  shape  of  the

vertical velocity curve。


On the Inconsistencies in the Prandtl…Karman Analysis
L。  Prandtl  and  Th。  von  Karman  have  successively  developed  the  mixing  length

theory and velocity deficiency Law of turbulent pipe flow by coordinating theoretical

analysis   partially   with   experimental   research。   Nevertheless;  

返回目录 上一页 下一页 回到顶部 2 1

你可能喜欢的