±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > the critique of pure reason >

µÚ86ÕÂ

the critique of pure reason-µÚ86ÕÂ

С˵£º the critique of pure reason ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




phenomena£»¡¡the¡¡category¡¡of¡¡substance¡¡and¡¡its¡¡accidents¡¡is¡¡not¡¡suitable

for¡¡the¡¡formation¡¡of¡¡a¡¡transcendental¡¡idea£»¡¡that¡¡is¡¡to¡¡say£»¡¡reason¡¡has

no¡¡ground£»¡¡in¡¡regard¡¡to¡¡it£»¡¡to¡¡proceed¡¡regressively¡¡with¡¡conditions¡£

For¡¡accidents¡¡£¨in¡¡so¡¡far¡¡as¡¡they¡¡inhere¡¡in¡¡a¡¡substance£©¡¡are

co¡­ordinated¡¡with¡¡each¡¡other£»¡¡and¡¡do¡¡not¡¡constitute¡¡a¡¡series¡£¡¡And£»

in¡¡relation¡¡to¡¡substance£»¡¡they¡¡are¡¡not¡¡properly¡¡subordinated¡¡to¡¡it£»

but¡¡are¡¡the¡¡mode¡¡of¡¡existence¡¡of¡¡the¡¡substance¡¡itself¡£¡¡The

conception¡¡of¡¡the¡¡substantial¡¡might¡¡nevertheless¡¡seem¡¡to¡¡be¡¡an¡¡idea¡¡of

the¡¡transcendental¡¡reason¡£¡¡But£»¡¡as¡¡this¡¡signifies¡¡nothing¡¡more¡¡than

the¡¡conception¡¡of¡¡an¡¡object¡¡in¡¡general£»¡¡which¡¡subsists¡¡in¡¡so¡¡far¡¡as¡¡we

cogitate¡¡in¡¡it¡¡merely¡¡a¡¡transcendental¡¡subject¡¡without¡¡any¡¡predicates£»

and¡¡as¡¡the¡¡question¡¡here¡¡is¡¡of¡¡an¡¡unconditioned¡¡in¡¡the¡¡series¡¡of

phenomena¡­¡¡it¡¡is¡¡clear¡¡that¡¡the¡¡substantial¡¡can¡¡form¡¡no¡¡member

thereof¡£¡¡The¡¡same¡¡holds¡¡good¡¡of¡¡substances¡¡in¡¡community£»¡¡which¡¡are

mere¡¡aggregates¡¡and¡¡do¡¡not¡¡form¡¡a¡¡series¡£¡¡For¡¡they¡¡are¡¡not

subordinated¡¡to¡¡each¡¡other¡¡as¡¡conditions¡¡of¡¡the¡¡possibility¡¡of¡¡each

other£»¡¡which£»¡¡however£»¡¡may¡¡be¡¡affirmed¡¡of¡¡spaces£»¡¡the¡¡limits¡¡of

which¡¡are¡¡never¡¡determined¡¡in¡¡themselves£»¡¡but¡¡always¡¡by¡¡some¡¡other

space¡£¡¡It¡¡is£»¡¡therefore£»¡¡only¡¡in¡¡the¡¡category¡¡of¡¡causality¡¡that¡¡we¡¡can

find¡¡a¡¡series¡¡of¡¡causes¡¡to¡¡a¡¡given¡¡effect£»¡¡and¡¡in¡¡which¡¡we¡¡ascend¡¡from

the¡¡latter£»¡¡as¡¡the¡¡conditioned£»¡¡to¡¡the¡¡former¡¡as¡¡the¡¡conditions£»¡¡and

thus¡¡answer¡¡the¡¡question¡¡of¡¡reason¡£

¡¡¡¡Fourthly£»¡¡the¡¡conceptions¡¡of¡¡the¡¡possible£»¡¡the¡¡actual£»¡¡and¡¡the

necessary¡¡do¡¡not¡¡conduct¡¡us¡¡to¡¡any¡¡series¡­¡¡excepting¡¡only¡¡in¡¡so¡¡far¡¡as

the¡¡contingent¡¡in¡¡existence¡¡must¡¡always¡¡be¡¡regarded¡¡as¡¡conditioned£»

and¡¡as¡¡indicating£»¡¡according¡¡to¡¡a¡¡law¡¡of¡¡the¡¡understanding£»¡¡a

condition£»¡¡under¡¡which¡¡it¡¡is¡¡necessary¡¡to¡¡rise¡¡to¡¡a¡¡higher£»¡¡till¡¡in

the¡¡totality¡¡of¡¡the¡¡series£»¡¡reason¡¡arrives¡¡at¡¡unconditioned¡¡necessity¡£

¡¡¡¡There¡¡are£»¡¡accordingly£»¡¡only¡¡four¡¡cosmological¡¡ideas£»

corresponding¡¡with¡¡the¡¡four¡¡titles¡¡of¡¡the¡¡categories¡£¡¡For¡¡we¡¡can

select¡¡only¡¡such¡¡as¡¡necessarily¡¡furnish¡¡us¡¡with¡¡a¡¡series¡¡in¡¡the

synthesis¡¡of¡¡the¡¡manifold¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡Completeness

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡COMPOSITION

¡¡¡¡¡¡¡¡¡¡of¡¡the¡¡given¡¡totality¡¡of¡¡all¡¡phenomena¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡Completeness

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡DIVISION

¡¡¡¡¡¡¡¡¡¡of¡¡given¡¡totality¡¡in¡¡a¡¡phenomenon¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡Completeness

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ORIGINATION

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡a¡¡phenomenon¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡Completeness

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the¡¡DEPENDENCE¡¡of¡¡the¡¡EXISTENCE

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡what¡¡is¡¡changeable¡¡in¡¡a¡¡phenomenon¡£



¡¡¡¡We¡¡must¡¡here¡¡remark£»¡¡in¡¡the¡¡first¡¡place£»¡¡that¡¡the¡¡idea¡¡of¡¡absolute

totality¡¡relates¡¡to¡¡nothing¡¡but¡¡the¡¡exposition¡¡of¡¡phenomena£»¡¡and

therefore¡¡not¡¡to¡¡the¡¡pure¡¡conception¡¡of¡¡a¡¡totality¡¡of¡¡things¡£

Phenomena¡¡are¡¡here£»¡¡therefore£»¡¡regarded¡¡as¡¡given£»¡¡and¡¡reason

requires¡¡the¡¡absolute¡¡completeness¡¡of¡¡the¡¡conditions¡¡of¡¡their

possibility£»¡¡in¡¡so¡¡far¡¡as¡¡these¡¡conditions¡¡constitute¡¡a¡¡series¡­

consequently¡¡an¡¡absolutely¡¡£¨that¡¡is£»¡¡in¡¡every¡¡respect£©¡¡complete

synthesis£»¡¡whereby¡¡a¡¡phenomenon¡¡can¡¡be¡¡explained¡¡according¡¡to¡¡the¡¡laws

of¡¡the¡¡understanding¡£

¡¡¡¡Secondly£»¡¡it¡¡is¡¡properly¡¡the¡¡unconditioned¡¡alone¡¡that¡¡reason¡¡seeks

in¡¡this¡¡serially¡¡and¡¡regressively¡¡conducted¡¡synthesis¡¡of¡¡conditions¡£

It¡¡wishes£»¡¡to¡¡speak¡¡in¡¡another¡¡way£»¡¡to¡¡attain¡¡to¡¡completeness¡¡in¡¡the

series¡¡of¡¡premisses£»¡¡so¡¡as¡¡to¡¡render¡¡it¡¡unnecessary¡¡to¡¡presuppose

others¡£¡¡This¡¡unconditioned¡¡is¡¡always¡¡contained¡¡in¡¡the¡¡absolute

totality¡¡of¡¡the¡¡series£»¡¡when¡¡we¡¡endeavour¡¡to¡¡form¡¡a¡¡representation

of¡¡it¡¡in¡¡thought¡£¡¡But¡¡this¡¡absolutely¡¡complete¡¡synthesis¡¡is¡¡itself¡¡but

an¡¡idea£»¡¡for¡¡it¡¡is¡¡impossible£»¡¡at¡¡least¡¡before¡¡hand£»¡¡to¡¡know¡¡whether

any¡¡such¡¡synthesis¡¡is¡¡possible¡¡in¡¡the¡¡case¡¡of¡¡phenomena¡£¡¡When¡¡we

represent¡¡all¡¡existence¡¡in¡¡thought¡¡by¡¡means¡¡of¡¡pure¡¡conceptions¡¡of¡¡the

understanding£»¡¡without¡¡any¡¡conditions¡¡of¡¡sensuous¡¡intuition£»¡¡we¡¡may

say¡¡with¡¡justice¡¡that¡¡for¡¡a¡¡given¡¡conditioned¡¡the¡¡whole¡¡series¡¡of

conditions¡¡subordinated¡¡to¡¡each¡¡other¡¡is¡¡also¡¡given£»¡¡for¡¡the¡¡former¡¡is

only¡¡given¡¡through¡¡the¡¡latter¡£¡¡But¡¡we¡¡find¡¡in¡¡the¡¡case¡¡of¡¡phenomena

a¡¡particular¡¡limitation¡¡of¡¡the¡¡mode¡¡in¡¡which¡¡conditions¡¡are¡¡given£»

that¡¡is£»¡¡through¡¡the¡¡successive¡¡synthesis¡¡of¡¡the¡¡manifold¡¡of

intuition£»¡¡which¡¡must¡¡be¡¡complete¡¡in¡¡the¡¡regress¡£¡¡Now¡¡whether¡¡this

completeness¡¡is¡¡sensuously¡¡possible£»¡¡is¡¡a¡¡problem¡£¡¡But¡¡the¡¡idea¡¡of

it¡¡lies¡¡in¡¡the¡¡reason¡­¡¡be¡¡it¡¡possible¡¡or¡¡impossible¡¡to¡¡connect¡¡with

the¡¡idea¡¡adequate¡¡empirical¡¡conceptions¡£¡¡Therefore£»¡¡as¡¡in¡¡the¡¡absolute

totality¡¡of¡¡the¡¡regressive¡¡synthesis¡¡of¡¡the¡¡manifold¡¡in¡¡a¡¡phenomenon

£¨following¡¡the¡¡guidance¡¡of¡¡the¡¡categories£»¡¡which¡¡represent¡¡it¡¡as¡¡a

series¡¡of¡¡conditions¡¡to¡¡a¡¡given¡¡conditioned£©¡¡the¡¡unconditioned¡¡is

necessarily¡¡contained¡­¡¡it¡¡being¡¡still¡¡left¡¡unascertained¡¡whether¡¡and

how¡¡this¡¡totality¡¡exists£»¡¡reason¡¡sets¡¡out¡¡from¡¡the¡¡idea¡¡of¡¡totality£»

although¡¡its¡¡proper¡¡and¡¡final¡¡aim¡¡is¡¡the¡¡unconditioned¡­¡¡of¡¡the¡¡whole

series£»¡¡or¡¡of¡¡a¡¡part¡¡thereof¡£

¡¡¡¡This¡¡unconditioned¡¡may¡¡be¡¡cogitated¡­¡¡either¡¡as¡¡existing¡¡only¡¡in

the¡¡entire¡¡series£»¡¡all¡¡the¡¡members¡¡of¡¡which¡¡therefore¡¡would¡¡be¡¡without

exception¡¡conditioned¡¡and¡¡only¡¡the¡¡totality¡¡absolutely

unconditioned¡­¡¡and¡¡in¡¡this¡¡case¡¡the¡¡regressus¡¡is¡¡called¡¡infinite£»¡¡or

the¡¡absolutely¡¡unconditioned¡¡is¡¡only¡¡a¡¡part¡¡of¡¡the¡¡series£»¡¡to¡¡which

the¡¡other¡¡members¡¡are¡¡subordinated£»¡¡but¡¡which¡¡Is¡¡not¡¡itself

submitted¡¡to¡¡any¡¡other¡¡condition¡£*¡¡In¡¡the¡¡former¡¡case¡¡the¡¡series¡¡is

a¡¡parte¡¡priori¡¡unlimited¡¡£¨without¡¡beginning£©£»¡¡that¡¡is£»¡¡infinite£»¡¡and

nevertheless¡¡completely¡¡given¡£¡¡But¡¡the¡¡regress¡¡in¡¡it¡¡is¡¡never

completed£»¡¡and¡¡can¡¡only¡¡be¡¡called¡¡potentially¡¡infinite¡£¡¡In¡¡the

second¡¡case¡¡there¡¡exists¡¡a¡¡first¡¡in¡¡the¡¡series¡£¡¡This¡¡first¡¡is

called£»¡¡in¡¡relation¡¡to¡¡past¡¡time£»¡¡the¡¡beginning¡¡of¡¡the¡¡world£»¡¡in

relation¡¡to¡¡space£»¡¡the¡¡limit¡¡of¡¡the¡¡world£»¡¡in¡¡relation¡¡to¡¡the¡¡parts¡¡of

a¡¡given¡¡limited¡¡whole£»¡¡the¡¡simple£»¡¡in¡¡relation¡¡to¡¡causes£»¡¡absolute

spontaneity¡¡£¨liberty£©£»¡¡and¡¡in¡¡relation¡¡to¡¡the¡¡existence¡¡of

changeable¡¡things£»¡¡absolute¡¡physical¡¡necessity¡£



¡¡¡¡*The¡¡absolute¡¡totality¡¡of¡¡the¡¡series¡¡of¡¡conditions¡¡to¡¡a¡¡given

conditioned¡¡is¡¡always¡¡unconditioned£»¡¡because¡¡beyond¡¡it¡¡there¡¡exist

no¡¡other¡¡conditions£»¡¡on¡¡which¡¡it¡¡might¡¡depend¡£¡¡But¡¡the¡¡absolute

totality¡¡of¡¡such¡¡a¡¡series¡¡is¡¡only¡¡an¡¡idea£»¡¡or¡¡rather¡¡a¡¡problematical

conception£»¡¡the¡¡possibility¡¡of¡¡which¡¡must¡¡be¡¡investigated¡­

particularly¡¡in¡¡relation¡¡to¡¡the¡¡mode¡¡in¡¡which¡¡the¡¡unconditioned£»¡¡as

the¡¡transcendental¡¡idea¡¡which¡¡is¡¡the¡¡real¡¡subject¡¡of¡¡inquiry£»¡¡may¡¡be

contained¡¡therein¡£



¡¡¡¡We¡¡possess¡¡two¡¡expressions£»¡¡world¡¡and¡¡nature£»¡¡which¡¡are¡¡generally

interchanged¡£¡¡The¡¡first¡¡denotes¡¡the¡¡mathematical¡¡total¡¡of¡¡all

phenomena¡¡and¡¡the¡¡totality¡¡of¡¡their¡¡synthesis¡­¡¡in¡¡its¡¡progress¡¡by

means¡¡of¡¡composition£»¡¡as¡¡well¡¡as¡¡by¡¡division¡£¡¡And¡¡the¡¡world¡¡is

termed¡¡nature£»*¡¡when¡¡it¡¡is¡¡regarded¡¡as¡¡a¡¡dynamical¡¡whole¡­¡¡when¡¡our

attention¡¡is¡¡not¡¡directed¡¡to¡¡the¡¡aggregation¡¡in¡¡space¡¡and¡¡time£»¡¡for

the¡¡purpose¡¡of¡¡cogitating¡¡it¡¡as¡¡a¡¡quantity£»¡¡but¡¡to¡¡the¡¡unity¡¡in¡¡the

existence¡¡of¡¡phenomena¡£¡¡In¡¡this¡¡case¡¡the¡¡condition¡¡of¡¡that¡¡which

happens¡¡is¡¡called¡¡a¡¡cause£»¡¡the¡¡unconditioned¡¡causality¡¡of¡¡the¡¡cause¡¡in

a¡¡phenomenon¡¡is¡¡termed¡¡liberty£»¡¡the¡¡conditioned¡¡cause¡¡is¡¡called¡¡in¡¡a

more¡¡limited¡¡sense¡¡a¡¡natural¡¡cause¡£¡¡The¡¡conditioned¡¡in¡¡existence¡¡is

termed¡¡contingent£»¡¡and¡¡the¡¡unconditioned¡¡necessary¡£¡¡The

unconditioned¡¡necessity¡¡of¡¡phenomena¡¡may¡¡be¡¡called¡¡natural¡¡necessity¡£



¡¡¡¡*Nature£»¡¡understood¡¡adjective¡¡£¨formaliter£©£»¡¡signifies¡¡the¡¡complex¡¡of

the¡¡determinations¡¡of¡¡a¡¡thing£»¡¡connected¡¡according¡¡to¡¡an¡¡internal

principle¡¡of¡¡causality¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡we¡¡understand¡¡by¡¡nature£»

substantive¡¡£¨materialiter£©£»¡¡the¡¡sum¡¡total¡¡of¡¡phenomena£»¡¡in¡¡so¡¡far¡¡as

they£»¡¡by¡¡virtue¡¡of¡¡an¡¡internal¡¡principle¡¡of¡¡causality£»¡¡are¡¡connected

with¡¡each¡¡other¡¡throughout¡£¡¡In¡¡the¡¡former¡¡sense¡¡we¡¡speak¡¡of¡¡the¡¡nature

of¡¡liquid¡¡matter£»¡¡of¡¡fire£»¡¡etc¡££»¡¡and¡¡employ¡¡the¡¡word¡¡only¡¡adjecti

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ