the critique of pure reason-µÚ43ÕÂ
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
in¡¡experience¡£¡¡But¡¡apart¡¡from¡¡this¡¡relation£»¡¡a¡¡priori¡¡synthetical
propositions¡¡are¡¡absolutely¡¡impossible£»¡¡because¡¡they¡¡have¡¡no¡¡third
term£»¡¡that¡¡is£»¡¡no¡¡pure¡¡object£»¡¡in¡¡which¡¡the¡¡synthetical¡¡unity¡¡can
exhibit¡¡the¡¡objective¡¡reality¡¡of¡¡its¡¡conceptions¡£
¡¡¡¡Although£»¡¡then£»¡¡respecting¡¡space£»¡¡or¡¡the¡¡forms¡¡which¡¡productive
imagination¡¡describes¡¡therein£»¡¡we¡¡do¡¡cognize¡¡much¡¡a¡¡priori¡¡in
synthetical¡¡judgements£»¡¡and¡¡are¡¡really¡¡in¡¡no¡¡need¡¡of¡¡experience¡¡for
this¡¡purpose£»¡¡such¡¡knowledge¡¡would¡¡nevertheless¡¡amount¡¡to¡¡nothing
but¡¡a¡¡busy¡¡trifling¡¡with¡¡a¡¡mere¡¡chimera£»¡¡were¡¡not¡¡space¡¡to¡¡be
considered¡¡as¡¡the¡¡condition¡¡of¡¡the¡¡phenomena¡¡which¡¡constitute¡¡the
material¡¡of¡¡external¡¡experience¡£¡¡Hence¡¡those¡¡pure¡¡synthetical
judgements¡¡do¡¡relate£»¡¡though¡¡but¡¡mediately£»¡¡to¡¡possible¡¡experience£»¡¡or
rather¡¡to¡¡the¡¡possibility¡¡of¡¡experience£»¡¡and¡¡upon¡¡that¡¡alone¡¡is
founded¡¡the¡¡objective¡¡validity¡¡of¡¡their¡¡synthesis¡£
¡¡¡¡While¡¡then£»¡¡on¡¡the¡¡one¡¡hand£»¡¡experience£»¡¡as¡¡empirical¡¡synthesis£»
is¡¡the¡¡only¡¡possible¡¡mode¡¡of¡¡cognition¡¡which¡¡gives¡¡reality¡¡to¡¡all
other¡¡synthesis£»¡¡on¡¡the¡¡other¡¡hand£»¡¡this¡¡latter¡¡synthesis£»¡¡as
cognition¡¡a¡¡priori£»¡¡possesses¡¡truth£»¡¡that¡¡is£»¡¡accordance¡¡with¡¡its
object£»¡¡only¡¡in¡¡so¡¡far¡¡as¡¡it¡¡contains¡¡nothing¡¡more¡¡than¡¡what¡¡is
necessary¡¡to¡¡the¡¡synthetical¡¡unity¡¡of¡¡experience¡£
¡¡¡¡Accordingly£»¡¡the¡¡supreme¡¡principle¡¡of¡¡all¡¡synthetical¡¡judgements¡¡is£º
¡¨Every¡¡object¡¡is¡¡subject¡¡to¡¡the¡¡necessary¡¡conditions¡¡of¡¡the
synthetical¡¡unity¡¡of¡¡the¡¡manifold¡¡of¡¡intuition¡¡in¡¡a¡¡possible
experience¡£¡¨
¡¡¡¡A¡¡priori¡¡synthetical¡¡judgements¡¡are¡¡possible¡¡when¡¡we¡¡apply¡¡the
formal¡¡conditions¡¡of¡¡the¡¡a¡¡priori¡¡intuition£»¡¡the¡¡synthesis¡¡of¡¡the
imagination£»¡¡and¡¡the¡¡necessary¡¡unity¡¡of¡¡that¡¡synthesis¡¡in¡¡a
transcendental¡¡apperception£»¡¡to¡¡a¡¡possible¡¡cognition¡¡of¡¡experience£»
and¡¡say£º¡¡¡¨The¡¡conditions¡¡of¡¡the¡¡possibility¡¡of¡¡experience¡¡in¡¡general
are¡¡at¡¡the¡¡same¡¡time¡¡conditions¡¡of¡¡the¡¡possibility¡¡of¡¡the¡¡objects¡¡of
experience£»¡¡and¡¡have£»¡¡for¡¡that¡¡reason£»¡¡objective¡¡validity¡¡in¡¡an¡¡a
priori¡¡synthetical¡¡judgement¡£¡¨
¡¡¡¡¡¡¡¡¡¡SECTION¡¡III¡£¡¡Systematic¡¡Representation¡¡of¡¡all¡¡Synthetical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Principles¡¡of¡¡the¡¡Pure¡¡Understanding¡£
¡¡¡¡That¡¡principles¡¡exist¡¡at¡¡all¡¡is¡¡to¡¡be¡¡ascribed¡¡solely¡¡to¡¡the¡¡pure
understanding£»¡¡which¡¡is¡¡not¡¡only¡¡the¡¡faculty¡¡of¡¡rules¡¡in¡¡regard¡¡to
that¡¡which¡¡happens£»¡¡but¡¡is¡¡even¡¡the¡¡source¡¡of¡¡principles¡¡according
to¡¡which¡¡everything¡¡that¡¡can¡¡be¡¡presented¡¡to¡¡us¡¡as¡¡an¡¡object¡¡is
necessarily¡¡subject¡¡to¡¡rules£»¡¡because¡¡without¡¡such¡¡rules¡¡we¡¡never
could¡¡attain¡¡to¡¡cognition¡¡of¡¡an¡¡object¡£¡¡Even¡¡the¡¡laws¡¡of¡¡nature£»¡¡if
they¡¡are¡¡contemplated¡¡as¡¡principles¡¡of¡¡the¡¡empirical¡¡use¡¡of¡¡the
understanding£»¡¡possess¡¡also¡¡a¡¡characteristic¡¡of¡¡necessity£»¡¡and¡¡we
may¡¡therefore¡¡at¡¡least¡¡expect¡¡them¡¡to¡¡be¡¡determined¡¡upon¡¡grounds¡¡which
are¡¡valid¡¡a¡¡priori¡¡and¡¡antecedent¡¡to¡¡all¡¡experience¡£¡¡But¡¡all¡¡laws¡¡of
nature£»¡¡without¡¡distinction£»¡¡are¡¡subject¡¡to¡¡higher¡¡principles¡¡of¡¡the
understanding£»¡¡inasmuch¡¡as¡¡the¡¡former¡¡are¡¡merely¡¡applications¡¡of¡¡the
latter¡¡to¡¡particular¡¡cases¡¡of¡¡experience¡£¡¡These¡¡higher¡¡principles
alone¡¡therefore¡¡give¡¡the¡¡conception£»¡¡which¡¡contains¡¡the¡¡necessary
condition£»¡¡and£»¡¡as¡¡it¡¡were£»¡¡the¡¡exponent¡¡of¡¡a¡¡rule£»¡¡experience£»¡¡on¡¡the
other¡¡hand£»¡¡gives¡¡the¡¡case¡¡which¡¡comes¡¡under¡¡the¡¡rule¡£
¡¡¡¡There¡¡is¡¡no¡¡danger¡¡of¡¡our¡¡mistaking¡¡merely¡¡empirical¡¡principles
for¡¡principles¡¡of¡¡the¡¡pure¡¡understanding£»¡¡or¡¡conversely£»¡¡for¡¡the
character¡¡of¡¡necessity£»¡¡according¡¡to¡¡conceptions¡¡which¡¡distinguish¡¡the
latter£»¡¡and¡¡the¡¡absence¡¡of¡¡this¡¡in¡¡every¡¡empirical¡¡proposition£»¡¡how
extensively¡¡valid¡¡soever¡¡it¡¡may¡¡be£»¡¡is¡¡a¡¡perfect¡¡safeguard¡¡against
confounding¡¡them¡£¡¡There¡¡are£»¡¡however£»¡¡pure¡¡principles¡¡a¡¡priori£»
which¡¡nevertheless¡¡I¡¡should¡¡not¡¡ascribe¡¡to¡¡the¡¡pure¡¡understanding¡¡¡for
this¡¡reason£»¡¡that¡¡they¡¡are¡¡not¡¡derived¡¡from¡¡pure¡¡conceptions£»¡¡but
£¨although¡¡by¡¡the¡¡mediation¡¡of¡¡the¡¡understanding£©¡¡from¡¡pure¡¡intuitions¡£
But¡¡understanding¡¡is¡¡the¡¡faculty¡¡of¡¡conceptions¡£¡¡Such¡¡principles
mathematical¡¡science¡¡possesses£»¡¡but¡¡their¡¡application¡¡to¡¡experience£»
consequently¡¡their¡¡objective¡¡validity£»¡¡nay¡¡the¡¡possibility¡¡of¡¡such¡¡a
priori¡¡synthetical¡¡cognitions¡¡£¨the¡¡deduction¡¡thereof£©¡¡rests¡¡entirely
upon¡¡the¡¡pure¡¡understanding¡£
¡¡¡¡On¡¡this¡¡account£»¡¡I¡¡shall¡¡not¡¡reckon¡¡among¡¡my¡¡principles¡¡those¡¡of
mathematics£»¡¡though¡¡I¡¡shall¡¡include¡¡those¡¡upon¡¡the¡¡possibility¡¡and
objective¡¡validity¡¡a¡¡priori£»¡¡of¡¡principles¡¡of¡¡the¡¡mathematical
science£»¡¡which£»¡¡consequently£»¡¡are¡¡to¡¡be¡¡looked¡¡upon¡¡as¡¡the¡¡principle
of¡¡these£»¡¡and¡¡which¡¡proceed¡¡from¡¡conceptions¡¡to¡¡intuition£»¡¡and¡¡not
from¡¡intuition¡¡to¡¡conceptions¡£
¡¡¡¡In¡¡the¡¡application¡¡of¡¡the¡¡pure¡¡conceptions¡¡of¡¡the¡¡understanding¡¡to
possible¡¡experience£»¡¡the¡¡employment¡¡of¡¡their¡¡synthesis¡¡is¡¡either
mathematical¡¡or¡¡dynamical£»¡¡for¡¡it¡¡is¡¡directed¡¡partly¡¡on¡¡the
intuition¡¡alone£»¡¡partly¡¡on¡¡the¡¡existence¡¡of¡¡a¡¡phenomenon¡£¡¡But¡¡the¡¡a
priori¡¡conditions¡¡of¡¡intuition¡¡are¡¡in¡¡relation¡¡to¡¡a¡¡possible
experience¡¡absolutely¡¡necessary£»¡¡those¡¡of¡¡the¡¡existence¡¡of¡¡objects
of¡¡a¡¡possible¡¡empirical¡¡intuition¡¡are¡¡in¡¡themselves¡¡contingent¡£
Hence¡¡the¡¡principles¡¡of¡¡the¡¡mathematical¡¡use¡¡of¡¡the¡¡categories¡¡will
possess¡¡a¡¡character¡¡of¡¡absolute¡¡necessity£»¡¡that¡¡is£»¡¡will¡¡be
apodeictic£»¡¡those£»¡¡on¡¡the¡¡other¡¡hand£»¡¡of¡¡the¡¡dynamical¡¡use£»¡¡the
character¡¡of¡¡an¡¡a¡¡priori¡¡necessity¡¡indeed£»¡¡but¡¡only¡¡under¡¡the
condition¡¡of¡¡empirical¡¡thought¡¡in¡¡an¡¡experience£»¡¡therefore¡¡only
mediately¡¡and¡¡indirectly¡£¡¡Consequently¡¡they¡¡will¡¡not¡¡possess¡¡that
immediate¡¡evidence¡¡which¡¡is¡¡peculiar¡¡to¡¡the¡¡former£»¡¡although¡¡their
application¡¡to¡¡experience¡¡does¡¡not£»¡¡for¡¡that¡¡reason£»¡¡lose¡¡its¡¡truth
and¡¡certitude¡£¡¡But¡¡of¡¡this¡¡point¡¡we¡¡shall¡¡be¡¡better¡¡able¡¡to¡¡judge¡¡at
the¡¡conclusion¡¡of¡¡this¡¡system¡¡of¡¡principles¡£
¡¡¡¡The¡¡table¡¡of¡¡the¡¡categories¡¡is¡¡naturally¡¡our¡¡guide¡¡to¡¡the¡¡table¡¡of
principles£»¡¡because¡¡these¡¡are¡¡nothing¡¡else¡¡than¡¡rules¡¡for¡¡the
objective¡¡employment¡¡of¡¡the¡¡former¡£¡¡Accordingly£»¡¡all¡¡principles¡¡of¡¡the
pure¡¡understanding¡¡are£º
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Axioms
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Intuition
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Anticipations¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Analogies
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Perception¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Experience
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Postulates¡¡of
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Empirical¡¡Thought
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡in¡¡general
¡¡¡¡These¡¡appellations¡¡I¡¡have¡¡chosen¡¡advisedly£»¡¡in¡¡order¡¡that¡¡we¡¡might
not¡¡lose¡¡sight¡¡of¡¡the¡¡distinctions¡¡in¡¡respect¡¡of¡¡the¡¡evidence¡¡and
the¡¡employment¡¡of¡¡these¡¡principles¡£¡¡It¡¡will£»¡¡however£»¡¡soon¡¡appear
that¡¡¡a¡¡fact¡¡which¡¡concerns¡¡both¡¡the¡¡evidence¡¡of¡¡these¡¡principles£»¡¡and
the¡¡a¡¡priori¡¡determination¡¡of¡¡phenomena¡¡¡according¡¡to¡¡the¡¡categories
of¡¡quantity¡¡and¡¡quality¡¡£¨if¡¡we¡¡attend¡¡merely¡¡to¡¡the¡¡form¡¡of¡¡these£©£»
the¡¡principles¡¡of¡¡these¡¡categories¡¡are¡¡distinguishable¡¡from¡¡those¡¡of
the¡¡two¡¡others£»¡¡in¡¡as¡¡much¡¡as¡¡the¡¡former¡¡are¡¡possessed¡¡of¡¡an
intuitive£»¡¡but¡¡the¡¡latter¡¡of¡¡a¡¡merely¡¡discursive£»¡¡though¡¡in¡¡both
instances¡¡a¡¡complete£»¡¡certitude¡£¡¡I¡¡shall¡¡therefore¡¡call¡¡the¡¡former
mathematical£»¡¡and¡¡the¡¡latter¡¡dynamical¡¡principles¡£*¡¡It¡¡must¡¡be
observed£»¡¡however£»¡¡that¡¡by¡¡these¡¡terms¡¡I¡¡mean¡¡just¡¡as¡¡little¡¡in¡¡the
one¡¡case¡¡the¡¡principles¡¡of¡¡mathematics¡¡as¡¡those¡¡of¡¡general
£¨physical£©¡¡dynamics¡¡in¡¡the¡¡other¡£¡¡I¡¡have¡¡here¡¡in¡¡view¡¡merely¡¡the
principles¡¡of¡¡the¡¡pure¡¡understanding£»¡¡in¡¡their¡¡application¡¡to¡¡the
internal¡¡sense¡¡£¨without¡¡distinction¡¡of¡¡the¡¡representations¡¡given
therein£©£»¡¡by¡¡means¡¡of¡¡which¡¡the¡¡sciences¡¡of¡¡mathematics¡¡and¡¡dynamics
become¡¡possible¡£¡¡Accordingly£»¡¡I¡¡have¡¡named¡¡these¡¡principles¡¡rather
with¡¡reference¡¡to¡¡their¡¡application¡¡than¡¡their¡¡content£»¡¡and¡¡I¡¡shall
now¡¡proceed¡¡to¡¡consider¡¡them¡¡in¡¡the¡¡order¡¡in¡¡which¡¡they¡¡stand¡¡in¡¡the
table¡£
¡¡¡¡*All¡¡combination¡¡£¨conjunctio£©¡¡is¡¡either¡¡composition¡¡£¨compositio£©
or¡¡connection¡¡£¨nexus£©¡£¡¡The¡¡former¡¡is¡¡the¡¡synthesis¡¡of¡¡a¡¡manifold£»
the¡¡parts¡¡of¡¡which¡¡do¡¡not¡¡necessarily¡¡belong¡¡to¡¡each¡¡other¡£¡¡For
example£»¡¡the¡¡two¡¡triangles¡¡into¡¡which¡¡a¡¡square¡¡is¡¡divided¡¡by¡¡a
diagonal£»¡¡do¡¡not¡¡necessarily¡¡belong¡¡to¡¡each¡¡other£»¡¡and¡¡of¡¡this¡¡kind¡¡is
the¡¡synthesis¡¡of¡¡the¡¡homogeneous¡¡in¡¡everything¡¡tha