±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > the critique of pure reason >

µÚ27ÕÂ

the critique of pure reason-µÚ27ÕÂ

С˵£º the critique of pure reason ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




third¡¡requisite¡¡for¡¡the¡¡cognition¡¡of¡¡an¡¡object£»¡¡and¡¡these

conceptions¡¡are¡¡given¡¡by¡¡the¡¡understanding¡£

¡¡¡¡The¡¡same¡¡function¡¡which¡¡gives¡¡unity¡¡to¡¡the¡¡different

representation¡¡in¡¡a¡¡judgement£»¡¡gives¡¡also¡¡unity¡¡to¡¡the¡¡mere

synthesis¡¡of¡¡different¡¡representations¡¡in¡¡an¡¡intuition£»¡¡and¡¡this¡¡unity

we¡¡call¡¡the¡¡pure¡¡conception¡¡of¡¡the¡¡understanding¡£¡¡Thus£»¡¡the¡¡same

understanding£»¡¡and¡¡by¡¡the¡¡same¡¡operations£»¡¡whereby¡¡in¡¡conceptions£»

by¡¡means¡¡of¡¡analytical¡¡unity£»¡¡it¡¡produced¡¡the¡¡logical¡¡form¡¡of¡¡a

judgement£»¡¡introduces£»¡¡by¡¡means¡¡of¡¡the¡¡synthetical¡¡unity¡¡of¡¡the

manifold¡¡in¡¡intuition£»¡¡a¡¡transcendental¡¡content¡¡into¡¡its

representations£»¡¡on¡¡which¡¡account¡¡they¡¡are¡¡called¡¡pure¡¡conceptions

of¡¡the¡¡understanding£»¡¡and¡¡they¡¡apply¡¡a¡¡priori¡¡to¡¡objects£»¡¡a¡¡result¡¡not

within¡¡the¡¡power¡¡of¡¡general¡¡logic¡£

¡¡¡¡In¡¡this¡¡manner£»¡¡there¡¡arise¡¡exactly¡¡so¡¡many¡¡pure¡¡conceptions¡¡of

the¡¡understanding£»¡¡applying¡¡a¡¡priori¡¡to¡¡objects¡¡of¡¡intuition¡¡in

general£»¡¡as¡¡there¡¡are¡¡logical¡¡functions¡¡in¡¡all¡¡possible¡¡judgements¡£

For¡¡there¡¡is¡¡no¡¡other¡¡function¡¡or¡¡faculty¡¡existing¡¡in¡¡the

understanding¡¡besides¡¡those¡¡enumerated¡¡in¡¡that¡¡table¡£¡¡These

conceptions¡¡we¡¡shall£»¡¡with¡¡Aristotle£»¡¡call¡¡categories£»¡¡our¡¡purpose

being¡¡originally¡¡identical¡¡with¡¡his£»¡¡notwithstanding¡¡the¡¡great

difference¡¡in¡¡the¡¡execution¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡TABLE¡¡OF¡¡THE¡¡CATEGORIES



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Of¡¡Quantity¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Of¡¡Quality

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Unity¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Reality

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Plurality¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Negation

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Totality¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Limitation



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Of¡¡Relation

¡¡¡¡¡¡Of¡¡Inherence¡¡and¡¡Subsistence¡¡£¨substantia¡¡et¡¡accidens£©

¡¡¡¡¡¡Of¡¡Causality¡¡and¡¡Dependence¡¡£¨cause¡¡and¡¡effect£©

¡¡¡¡¡¡Of¡¡Community¡¡£¨reciprocity¡¡between¡¡the¡¡agent¡¡and¡¡patient£©



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Of¡¡Modality

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Possibility¡¡¡­¡¡Impossibility

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Existence¡¡¡­¡¡Non¡­existence

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Necessity¡¡¡­¡¡Contingence



¡¡¡¡This£»¡¡then£»¡¡is¡¡a¡¡catalogue¡¡of¡¡all¡¡the¡¡originally¡¡pure¡¡conceptions¡¡of

the¡¡synthesis¡¡which¡¡the¡¡understanding¡¡contains¡¡a¡¡priori£»¡¡and¡¡these

conceptions¡¡alone¡¡entitle¡¡it¡¡to¡¡be¡¡called¡¡a¡¡pure¡¡understanding£»

inasmuch¡¡as¡¡only¡¡by¡¡them¡¡it¡¡can¡¡render¡¡the¡¡manifold¡¡of¡¡intuition

conceivable£»¡¡in¡¡other¡¡words£»¡¡think¡¡an¡¡object¡¡of¡¡intuition¡£¡¡This

division¡¡is¡¡made¡¡systematically¡¡from¡¡a¡¡common¡¡principle£»¡¡namely¡¡the

faculty¡¡of¡¡judgement¡¡£¨which¡¡is¡¡just¡¡the¡¡same¡¡as¡¡the¡¡power¡¡of¡¡thought£©£»

and¡¡has¡¡not¡¡arisen¡¡rhapsodically¡¡from¡¡a¡¡search¡¡at¡¡haphazard¡¡after¡¡pure

conceptions£»¡¡respecting¡¡the¡¡full¡¡number¡¡of¡¡which¡¡we¡¡never¡¡could¡¡be

certain£»¡¡inasmuch¡¡as¡¡we¡¡employ¡¡induction¡¡alone¡¡in¡¡our¡¡search£»

without¡¡considering¡¡that¡¡in¡¡this¡¡way¡¡we¡¡can¡¡never¡¡understand¡¡wherefore

precisely¡¡these¡¡conceptions£»¡¡and¡¡none¡¡others£»¡¡abide¡¡in¡¡the¡¡pure

understanding¡£¡¡It¡¡was¡¡a¡¡design¡¡worthy¡¡of¡¡an¡¡acute¡¡thinker¡¡like

Aristotle£»¡¡to¡¡search¡¡for¡¡these¡¡fundamental¡¡conceptions¡£¡¡Destitute£»

however£»¡¡of¡¡any¡¡guiding¡¡principle£»¡¡he¡¡picked¡¡them¡¡up¡¡just¡¡as¡¡they

occurred¡¡to¡¡him£»¡¡and¡¡at¡¡first¡¡hunted¡¡out¡¡ten£»¡¡which¡¡he¡¡called

categories¡¡£¨predicaments£©¡£¡¡Afterwards¡¡be¡¡believed¡¡that¡¡he¡¡had

discovered¡¡five¡¡others£»¡¡which¡¡were¡¡added¡¡under¡¡the¡¡name¡¡of¡¡post

predicaments¡£¡¡But¡¡his¡¡catalogue¡¡still¡¡remained¡¡defective¡£¡¡Besides£»

there¡¡are¡¡to¡¡be¡¡found¡¡among¡¡them¡¡some¡¡of¡¡the¡¡modes¡¡of¡¡pure¡¡sensibility

£¨quando£»¡¡ubi£»¡¡situs£»¡¡also¡¡prius£»¡¡simul£©£»¡¡and¡¡likewise¡¡an¡¡empirical

conception¡¡£¨motus£©¡­¡¡which¡¡can¡¡by¡¡no¡¡means¡¡belong¡¡to¡¡this

genealogical¡¡register¡¡of¡¡the¡¡pure¡¡understanding¡£¡¡Moreover£»¡¡there¡¡are

deduced¡¡conceptions¡¡£¨actio£»¡¡passio£©¡¡enumerated¡¡among¡¡the¡¡original

conceptions£»¡¡and£»¡¡of¡¡the¡¡latter£»¡¡some¡¡are¡¡entirely¡¡wanting¡£

¡¡¡¡With¡¡regard¡¡to¡¡these£»¡¡it¡¡is¡¡to¡¡be¡¡remarked£»¡¡that¡¡the¡¡categories£»

as¡¡the¡¡true¡¡primitive¡¡conceptions¡¡of¡¡the¡¡pure¡¡understanding£»¡¡have¡¡also

their¡¡pure¡¡deduced¡¡conceptions£»¡¡which£»¡¡in¡¡a¡¡complete¡¡system¡¡of

transcendental¡¡philosophy£»¡¡must¡¡by¡¡no¡¡means¡¡be¡¡passed¡¡over£»¡¡though

in¡¡a¡¡merely¡¡critical¡¡essay¡¡we¡¡must¡¡be¡¡contented¡¡with¡¡the¡¡simple

mention¡¡of¡¡the¡¡fact¡£

¡¡¡¡Let¡¡it¡¡be¡¡allowed¡¡me¡¡to¡¡call¡¡these¡¡pure£»¡¡but¡¡deduced¡¡conceptions

of¡¡the¡¡understanding£»¡¡the¡¡predicables¡¡of¡¡the¡¡pure¡¡understanding£»¡¡in

contradistinction¡¡to¡¡predicaments¡£¡¡If¡¡we¡¡are¡¡in¡¡possession¡¡of¡¡the

original¡¡and¡¡primitive£»¡¡the¡¡deduced¡¡and¡¡subsidiary¡¡conceptions¡¡can

easily¡¡be¡¡added£»¡¡and¡¡the¡¡genealogical¡¡tree¡¡of¡¡the¡¡understanding

completely¡¡delineated¡£¡¡As¡¡my¡¡present¡¡aim¡¡is¡¡not¡¡to¡¡set¡¡forth¡¡a

complete¡¡system£»¡¡but¡¡merely¡¡the¡¡principles¡¡of¡¡one£»¡¡I¡¡reserve¡¡this¡¡task

for¡¡another¡¡time¡£¡¡It¡¡may¡¡be¡¡easily¡¡executed¡¡by¡¡any¡¡one¡¡who¡¡will

refer¡¡to¡¡the¡¡ontological¡¡manuals£»¡¡and¡¡subordinate¡¡to¡¡the¡¡category¡¡of

causality£»¡¡for¡¡example£»¡¡the¡¡predicables¡¡of¡¡force£»¡¡action£»¡¡passion£»

to¡¡that¡¡of¡¡community£»¡¡those¡¡of¡¡presence¡¡and¡¡resistance£»¡¡to¡¡the

categories¡¡of¡¡modality£»¡¡those¡¡of¡¡origination£»¡¡extinction£»¡¡change£»

and¡¡so¡¡with¡¡the¡¡rest¡£¡¡The¡¡categories¡¡combined¡¡with¡¡the¡¡modes¡¡of¡¡pure

sensibility£»¡¡or¡¡with¡¡one¡¡another£»¡¡afford¡¡a¡¡great¡¡number¡¡of¡¡deduced¡¡a

priori¡¡conceptions£»¡¡a¡¡complete¡¡enumeration¡¡of¡¡which¡¡would¡¡be¡¡a

useful¡¡and¡¡not¡¡unpleasant£»¡¡but¡¡in¡¡this¡¡place¡¡a¡¡perfectly

dispensable£»¡¡occupation¡£

¡¡¡¡I¡¡purposely¡¡omit¡¡the¡¡definitions¡¡of¡¡the¡¡categories¡¡in¡¡this¡¡treatise¡£

I¡¡shall¡¡analyse¡¡these¡¡conceptions¡¡only¡¡so¡¡far¡¡as¡¡is¡¡necessary¡¡for

the¡¡doctrine¡¡of¡¡method£»¡¡which¡¡is¡¡to¡¡form¡¡a¡¡part¡¡of¡¡this¡¡critique¡£¡¡In¡¡a

system¡¡of¡¡pure¡¡reason£»¡¡definitions¡¡of¡¡them¡¡would¡¡be¡¡with¡¡justice

demanded¡¡of¡¡me£»¡¡but¡¡to¡¡give¡¡them¡¡here¡¡would¡¡only¡¡bide¡¡from¡¡our¡¡view

the¡¡main¡¡aim¡¡of¡¡our¡¡investigation£»¡¡at¡¡the¡¡same¡¡time¡¡raising¡¡doubts¡¡and

objections£»¡¡the¡¡consideration¡¡of¡¡which£»¡¡without¡¡injustice¡¡to¡¡our

main¡¡purpose£»¡¡may¡¡be¡¡very¡¡well¡¡postponed¡¡till¡¡another¡¡opportunity¡£

Meanwhile£»¡¡it¡¡ought¡¡to¡¡be¡¡sufficiently¡¡clear£»¡¡from¡¡the¡¡little¡¡we

have¡¡already¡¡said¡¡on¡¡this¡¡subject£»¡¡that¡¡the¡¡formation¡¡of¡¡a¡¡complete

vocabulary¡¡of¡¡pure¡¡conceptions£»¡¡accompanied¡¡by¡¡all¡¡the¡¡requisite

explanations£»¡¡is¡¡not¡¡only¡¡a¡¡possible£»¡¡but¡¡an¡¡easy¡¡undertaking¡£¡¡The

compartments¡¡already¡¡exist£»¡¡it¡¡is¡¡only¡¡necessary¡¡to¡¡fill¡¡them¡¡up£»

and¡¡a¡¡systematic¡¡topic¡¡like¡¡the¡¡present£»¡¡indicates¡¡with¡¡perfect

precision¡¡the¡¡proper¡¡place¡¡to¡¡which¡¡each¡¡conception¡¡belongs£»¡¡while

it¡¡readily¡¡points¡¡out¡¡any¡¡that¡¡have¡¡not¡¡yet¡¡been¡¡filled¡¡up¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡SS¡¡7



¡¡¡¡Our¡¡table¡¡of¡¡the¡¡categories¡¡suggests¡¡considerations¡¡of¡¡some

importance£»¡¡which¡¡may¡¡perhaps¡¡have¡¡significant¡¡results¡¡in¡¡regard¡¡to

the¡¡scientific¡¡form¡¡of¡¡all¡¡rational¡¡cognitions¡£¡¡For£»¡¡that¡¡this¡¡table

is¡¡useful¡¡in¡¡the¡¡theoretical¡¡part¡¡of¡¡philosophy£»¡¡nay£»¡¡indispensable

for¡¡the¡¡sketching¡¡of¡¡the¡¡complete¡¡plan¡¡of¡¡a¡¡science£»¡¡so¡¡far¡¡as¡¡that

science¡¡rests¡¡upon¡¡conceptions¡¡a¡¡priori£»¡¡and¡¡for¡¡dividing¡¡it

mathematically£»¡¡according¡¡to¡¡fixed¡¡principles£»¡¡is¡¡most¡¡manifest¡¡from

the¡¡fact¡¡that¡¡it¡¡contains¡¡all¡¡the¡¡elementary¡¡conceptions¡¡of¡¡the

understanding£»¡¡nay£»¡¡even¡¡the¡¡form¡¡of¡¡a¡¡system¡¡of¡¡these¡¡in¡¡the

understanding¡¡itself£»¡¡and¡¡consequently¡¡indicates¡¡all¡¡the¡¡momenta£»

and¡¡also¡¡the¡¡internal¡¡arrangement¡¡of¡¡a¡¡projected¡¡speculative

science£»¡¡as¡¡I¡¡have¡¡elsewhere¡¡shown¡£*¡¡Here¡¡follow¡¡some¡¡of¡¡these

observations¡£



¡¡¡¡*In¡¡the¡¡Metaphysical¡¡Principles¡¡of¡¡Natural¡¡Science¡£



¡¡¡¡I¡£¡¡This¡¡table£»¡¡which¡¡contains¡¡four¡¡classes¡¡of¡¡conceptions¡¡of¡¡the

understanding£»¡¡may£»¡¡in¡¡the¡¡first¡¡instance£»¡¡be¡¡divided¡¡into¡¡two

classes£»¡¡the¡¡first¡¡of¡¡which¡¡relates¡¡to¡¡objects¡¡of¡¡intuition¡­¡¡pure¡¡as

well¡¡as¡¡empirical£»¡¡the¡¡second£»¡¡to¡¡the¡¡existence¡¡of¡¡these¡¡objects£»

either¡¡in¡¡relation¡¡to¡¡one¡¡another£»¡¡or¡¡to¡¡the¡¡understanding¡£

¡¡¡¡The¡¡former¡¡of¡¡these¡¡classes¡¡of¡¡categories¡¡I¡¡would¡¡entitle¡¡the

mathematical£»¡¡and¡¡the¡¡latter¡¡the¡¡dynamical¡¡categories¡£¡¡The¡¡former£»

as¡¡we¡¡see£»¡¡has¡¡no¡¡correlates£»¡¡these¡¡are¡¡only¡¡to¡¡be¡¡found¡¡in¡¡the¡¡second

class¡£¡¡This¡¡difference¡¡must¡¡have¡¡a¡¡ground¡¡in¡¡the¡¡nature¡¡of¡¡the¡¡human

understanding¡£

¡¡¡¡II¡£¡¡The¡¡number¡¡of¡¡the¡¡categories¡¡in¡¡each¡¡class¡¡is¡¡always¡¡the¡¡same£»

namely£»¡¡three¡­¡¡a¡¡fact¡¡which¡¡also¡¡demands¡¡some¡¡consideration£»¡¡because

in¡¡all¡¡other¡¡cases¡¡division¡¡a¡¡priori¡¡through¡¡conceptions¡¡is

necessarily¡¡dichotomy¡£¡¡It¡¡is¡¡to¡¡be¡¡added£»¡¡that¡¡the¡¡third¡¡category¡¡in

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ