the critique of pure reason-µÚ25ÕÂ
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
spontaneity¡¡of¡¡thought£»¡¡as¡¡sensuous¡¡intuitions¡¡are¡¡on¡¡the
receptivity¡¡of¡¡impressions¡£¡¡Now£»¡¡the¡¡understanding¡¡cannot¡¡make¡¡any
other¡¡use¡¡of¡¡these¡¡conceptions¡¡than¡¡to¡¡judge¡¡by¡¡means¡¡of¡¡them¡£¡¡As¡¡no
representation£»¡¡except¡¡an¡¡intuition£»¡¡relates¡¡immediately¡¡to¡¡its
object£»¡¡a¡¡conception¡¡never¡¡relates¡¡immediately¡¡to¡¡an¡¡object£»¡¡but
only¡¡to¡¡some¡¡other¡¡representation¡¡thereof£»¡¡be¡¡that¡¡an¡¡intuition¡¡or
itself¡¡a¡¡conception¡£¡¡A¡¡judgement£»¡¡therefore£»¡¡is¡¡the¡¡mediate
cognition¡¡of¡¡an¡¡object£»¡¡consequently¡¡the¡¡representation¡¡of¡¡a
representation¡¡of¡¡it¡£¡¡In¡¡every¡¡judgement¡¡there¡¡is¡¡a¡¡conception¡¡which
applies¡¡to£»¡¡and¡¡is¡¡valid¡¡for¡¡many¡¡other¡¡conceptions£»¡¡and¡¡which¡¡among
these¡¡comprehends¡¡also¡¡a¡¡given¡¡representation£»¡¡this¡¡last¡¡being
immediately¡¡connected¡¡with¡¡an¡¡object¡£¡¡For¡¡example£»¡¡in¡¡the¡¡judgement¡
¡¨All¡¡bodies¡¡are¡¡divisible£»¡¨¡¡our¡¡conception¡¡of¡¡divisible¡¡applies¡¡to
various¡¡other¡¡conceptions£»¡¡among¡¡these£»¡¡however£»¡¡it¡¡is¡¡here
particularly¡¡applied¡¡to¡¡the¡¡conception¡¡of¡¡body£»¡¡and¡¡this¡¡conception¡¡of
body¡¡relates¡¡to¡¡certain¡¡phenomena¡¡which¡¡occur¡¡to¡¡us¡£¡¡These¡¡objects£»
therefore£»¡¡are¡¡mediately¡¡represented¡¡by¡¡the¡¡conception¡¡of
divisibility¡£¡¡All¡¡judgements£»¡¡accordingly£»¡¡are¡¡functions¡¡of¡¡unity¡¡in
our¡¡representations£»¡¡inasmuch¡¡as£»¡¡instead¡¡of¡¡an¡¡immediate£»¡¡a¡¡higher
representation£»¡¡which¡¡comprises¡¡this¡¡and¡¡various¡¡others£»¡¡is¡¡used¡¡for
our¡¡cognition¡¡of¡¡the¡¡object£»¡¡and¡¡thereby¡¡many¡¡possible¡¡cognitions
are¡¡collected¡¡into¡¡one¡£¡¡But¡¡we¡¡can¡¡reduce¡¡all¡¡acts¡¡of¡¡the
understanding¡¡to¡¡judgements£»¡¡so¡¡that¡¡understanding¡¡may¡¡be
represented¡¡as¡¡the¡¡faculty¡¡of¡¡judging¡£¡¡For¡¡it¡¡is£»¡¡according¡¡to¡¡what
has¡¡been¡¡said¡¡above£»¡¡a¡¡faculty¡¡of¡¡thought¡£¡¡Now¡¡thought¡¡is¡¡cognition¡¡by
means¡¡of¡¡conceptions¡£¡¡But¡¡conceptions£»¡¡as¡¡predicates¡¡of¡¡possible
judgements£»¡¡relate¡¡to¡¡some¡¡representation¡¡of¡¡a¡¡yet¡¡undetermined
object¡£¡¡Thus¡¡the¡¡conception¡¡of¡¡body¡¡indicates¡¡something¡¡¡for
example£»¡¡metal¡¡¡which¡¡can¡¡be¡¡cognized¡¡by¡¡means¡¡of¡¡that¡¡conception¡£
It¡¡is¡¡therefore¡¡a¡¡conception£»¡¡for¡¡the¡¡reason¡¡alone¡¡that¡¡other
representations¡¡are¡¡contained¡¡under¡¡it£»¡¡by¡¡means¡¡of¡¡which¡¡it¡¡can
relate¡¡to¡¡objects¡£¡¡It¡¡is¡¡therefore¡¡the¡¡predicate¡¡to¡¡a¡¡possible
judgement£»¡¡for¡¡example£º¡¡¡¨Every¡¡metal¡¡is¡¡a¡¡body¡£¡¨¡¡All¡¡the¡¡functions
of¡¡the¡¡understanding¡¡therefore¡¡can¡¡be¡¡discovered£»¡¡when¡¡we¡¡can
completely¡¡exhibit¡¡the¡¡functions¡¡of¡¡unity¡¡in¡¡judgements¡£¡¡And¡¡that¡¡this
may¡¡be¡¡effected¡¡very¡¡easily£»¡¡the¡¡following¡¡section¡¡will¡¡show¡£
¡¡¡¡SECTION¡¡II¡£¡¡Of¡¡the¡¡Logical¡¡Function¡¡of¡¡the¡¡Understanding¡¡in
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Judgements¡£¡¡SS¡¡5
¡¡¡¡If¡¡we¡¡abstract¡¡all¡¡the¡¡content¡¡of¡¡a¡¡judgement£»¡¡and¡¡consider¡¡only¡¡the
intellectual¡¡form¡¡thereof£»¡¡we¡¡find¡¡that¡¡the¡¡function¡¡of¡¡thought¡¡in¡¡a
judgement¡¡can¡¡be¡¡brought¡¡under¡¡four¡¡heads£»¡¡of¡¡which¡¡each¡¡contains
three¡¡momenta¡£¡¡These¡¡may¡¡be¡¡conveniently¡¡represented¡¡in¡¡the
following¡¡table£º
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quantity¡¡of¡¡judgements
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Universal
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Particular
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Singular
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quality¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Relation
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Affirmative¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Categorical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Negative¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Hypothetical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Infinite¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Disjunctive
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Modality
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Problematical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Assertorical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Apodeictical
¡¡¡¡As¡¡this¡¡division¡¡appears¡¡to¡¡differ¡¡in¡¡some£»¡¡though¡¡not¡¡essential
points£»¡¡from¡¡the¡¡usual¡¡technique¡¡of¡¡logicians£»¡¡the¡¡following
observations£»¡¡for¡¡the¡¡prevention¡¡of¡¡otherwise¡¡possible
misunderstanding£»¡¡will¡¡not¡¡be¡¡without¡¡their¡¡use¡£
¡¡¡¡1¡£¡¡Logicians¡¡say£»¡¡with¡¡justice£»¡¡that¡¡in¡¡the¡¡use¡¡of¡¡judgements¡¡in
syllogisms£»¡¡singular¡¡judgements¡¡may¡¡be¡¡treated¡¡like¡¡universal¡¡ones¡£
For£»¡¡precisely¡¡because¡¡a¡¡singular¡¡judgement¡¡has¡¡no¡¡extent¡¡at¡¡all£»
its¡¡predicate¡¡cannot¡¡refer¡¡to¡¡a¡¡part¡¡of¡¡that¡¡which¡¡is¡¡contained¡¡in¡¡the
conception¡¡of¡¡the¡¡subject¡¡and¡¡be¡¡excluded¡¡from¡¡the¡¡rest¡£¡¡The¡¡predicate
is¡¡valid¡¡for¡¡the¡¡whole¡¡conception¡¡just¡¡as¡¡if¡¡it¡¡were¡¡a¡¡general
conception£»¡¡and¡¡had¡¡extent£»¡¡to¡¡the¡¡whole¡¡of¡¡which¡¡the¡¡predicate
applied¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡let¡¡us¡¡compare¡¡a¡¡singular¡¡with¡¡a¡¡general
judgement£»¡¡merely¡¡as¡¡a¡¡cognition£»¡¡in¡¡regard¡¡to¡¡quantity¡£¡¡The
singular¡¡judgement¡¡relates¡¡to¡¡the¡¡general¡¡one£»¡¡as¡¡unity¡¡to¡¡infinity£»
and¡¡is¡¡therefore¡¡in¡¡itself¡¡essentially¡¡different¡£¡¡Thus£»¡¡if¡¡we¡¡estimate
a¡¡singular¡¡judgement¡¡£¨judicium¡¡singulare£©¡¡not¡¡merely¡¡according¡¡to
its¡¡intrinsic¡¡validity¡¡as¡¡a¡¡judgement£»¡¡but¡¡also¡¡as¡¡a¡¡cognition
generally£»¡¡according¡¡to¡¡its¡¡quantity¡¡in¡¡comparison¡¡with¡¡that¡¡of
other¡¡cognitions£»¡¡it¡¡is¡¡then¡¡entirely¡¡different¡¡from¡¡a¡¡general
judgement¡¡£¨judicium¡¡commune£©£»¡¡and¡¡in¡¡a¡¡complete¡¡table¡¡of¡¡the¡¡momenta
of¡¡thought¡¡deserves¡¡a¡¡separate¡¡place¡¡¡though£»¡¡indeed£»¡¡this¡¡would¡¡not
be¡¡necessary¡¡in¡¡a¡¡logic¡¡limited¡¡merely¡¡to¡¡the¡¡consideration¡¡of¡¡the¡¡use
of¡¡judgements¡¡in¡¡reference¡¡to¡¡each¡¡other¡£
¡¡¡¡2¡£¡¡In¡¡like¡¡manner£»¡¡in¡¡transcendental¡¡logic£»¡¡infinite¡¡must¡¡be
distinguished¡¡from¡¡affirmative¡¡judgements£»¡¡although¡¡in¡¡general¡¡logic
they¡¡are¡¡rightly¡¡enough¡¡classed¡¡under¡¡affirmative¡£¡¡General¡¡logic
abstracts¡¡all¡¡content¡¡of¡¡the¡¡predicate¡¡£¨though¡¡it¡¡be¡¡negative£©£»¡¡and
only¡¡considers¡¡whether¡¡the¡¡said¡¡predicate¡¡be¡¡affirmed¡¡or¡¡denied¡¡of¡¡the
subject¡£¡¡But¡¡transcendental¡¡logic¡¡considers¡¡also¡¡the¡¡worth¡¡or
content¡¡of¡¡this¡¡logical¡¡affirmation¡¡¡an¡¡affirmation¡¡by¡¡means¡¡of¡¡a
merely¡¡negative¡¡predicate£»¡¡and¡¡inquires¡¡how¡¡much¡¡the¡¡sum¡¡total¡¡of
our¡¡cognition¡¡gains¡¡by¡¡this¡¡affirmation¡£¡¡For¡¡example£»¡¡if¡¡I¡¡say¡¡of
the¡¡soul£»¡¡¡¨It¡¡is¡¡not¡¡mortal¡¨¡¡¡by¡¡this¡¡negative¡¡judgement¡¡I¡¡should¡¡at
least¡¡ward¡¡off¡¡error¡£¡¡Now£»¡¡by¡¡the¡¡proposition£»¡¡¡¨The¡¡soul¡¡is¡¡not
mortal£»¡¨¡¡I¡¡have£»¡¡in¡¡respect¡¡of¡¡the¡¡logical¡¡form£»¡¡really¡¡affirmed£»
inasmuch¡¡as¡¡I¡¡thereby¡¡place¡¡the¡¡soul¡¡in¡¡the¡¡unlimited¡¡sphere¡¡of
immortal¡¡beings¡£¡¡Now£»¡¡because¡¡of¡¡the¡¡whole¡¡sphere¡¡of¡¡possible
existences£»¡¡the¡¡mortal¡¡occupies¡¡one¡¡part£»¡¡and¡¡the¡¡immortal¡¡the
other£»¡¡neither¡¡more¡¡nor¡¡less¡¡is¡¡affirmed¡¡by¡¡the¡¡proposition¡¡than
that¡¡the¡¡soul¡¡is¡¡one¡¡among¡¡the¡¡infinite¡¡multitude¡¡of¡¡things¡¡which
remain¡¡over£»¡¡when¡¡I¡¡take¡¡away¡¡the¡¡whole¡¡mortal¡¡part¡£¡¡But¡¡by¡¡this
proceeding¡¡we¡¡accomplish¡¡only¡¡this¡¡much£»¡¡that¡¡the¡¡infinite¡¡sphere¡¡of
all¡¡possible¡¡existences¡¡is¡¡in¡¡so¡¡far¡¡limited¡¡that¡¡the¡¡mortal¡¡is
excluded¡¡from¡¡it£»¡¡and¡¡the¡¡soul¡¡is¡¡placed¡¡in¡¡the¡¡remaining¡¡part¡¡of
the¡¡extent¡¡of¡¡this¡¡sphere¡£¡¡But¡¡this¡¡part¡¡remains£»¡¡notwithstanding¡¡this
exception£»¡¡infinite£»¡¡and¡¡more¡¡and¡¡more¡¡parts¡¡may¡¡be¡¡taken¡¡away¡¡from
the¡¡whole¡¡sphere£»¡¡without¡¡in¡¡the¡¡slightest¡¡degree¡¡thereby¡¡augmenting
or¡¡affirmatively¡¡determining¡¡our¡¡conception¡¡of¡¡the¡¡soul¡£¡¡These
judgements£»¡¡therefore£»¡¡infinite¡¡in¡¡respect¡¡of¡¡their¡¡logical¡¡extent£»
are£»¡¡in¡¡respect¡¡of¡¡the¡¡content¡¡of¡¡their¡¡cognition£»¡¡merely
limitative£»¡¡and¡¡are¡¡consequently¡¡entitled¡¡to¡¡a¡¡place¡¡in¡¡our
transcendental¡¡table¡¡of¡¡all¡¡the¡¡momenta¡¡of¡¡thought¡¡in¡¡judgements£»
because¡¡the¡¡function¡¡of¡¡the¡¡understanding¡¡exercised¡¡by¡¡them¡¡may
perhaps¡¡be¡¡of¡¡importance¡¡in¡¡the¡¡field¡¡of¡¡its¡¡pure¡¡a¡¡priori¡¡cognition¡£
¡¡¡¡3¡£¡¡All¡¡relations¡¡of¡¡thought¡¡in¡¡judgements¡¡are¡¡those¡¡£¨a£©¡¡of¡¡the
predicate¡¡to¡¡the¡¡subject£»¡¡£¨b£©¡¡of¡¡the¡¡principle¡¡to¡¡its¡¡consequence£»¡¡£¨c£©
of¡¡the¡¡divided¡¡cognition¡¡and¡¡all¡¡the¡¡members¡¡of¡¡the¡¡division¡¡to¡¡each
other¡£¡¡In¡¡the¡¡first¡¡of¡¡these¡¡three¡¡classes£»¡¡we¡¡consider¡¡only¡¡two
conceptions£»¡¡in¡¡the¡¡second£»¡¡two¡¡judgements£»¡¡in¡¡the¡¡third£»¡¡several
judgements¡¡in¡¡relation¡¡to¡¡each¡¡other¡£¡¡The¡¡hypothetical¡¡proposition£»
¡¨If¡¡perfect¡¡justice¡¡exists£»¡¡the¡¡obstinately¡¡wicked¡¡are¡¡punished£»¡¨
contains¡¡properly¡¡the¡¡relation¡¡to¡¡each¡¡other¡¡of¡¡two¡¡propositions£»
namely£»¡¡¡¨Perfect¡¡justice¡¡exists£»¡¨¡¡and¡¡¡¨The¡¡obstinately¡¡wicked¡¡are
punished¡£¡¨¡¡Whether¡¡these¡¡propositions¡¡are¡¡in¡¡themselves¡¡true¡¡is¡¡a
question¡¡not¡¡here¡¡decided¡£¡¡Nothing¡¡is¡¡cogitated¡¡by¡¡means¡¡of¡¡this
judgement¡¡except¡¡a¡¡certain¡¡consequence¡£¡¡Finally£»¡¡the¡¡disjunctive
judgement¡¡contains¡¡a¡¡relation¡¡of¡¡two¡¡or¡¡more¡¡propositions¡¡to¡¡each
other¡¡¡a¡¡relation¡¡not¡¡of¡¡consequence£»¡¡but¡¡of¡¡logical¡¡opposition£»¡¡in¡¡so
far¡¡as¡¡the¡¡sphere