从一到无穷大-第7章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
淳拢�
搞这些有什么用呢?
没有什么用,只不过让你作作脑筋操,体会一下什么是想象的几何学。这有助于理解弯曲空间和自我封闭空间这类不寻常的东西。
你大概还没有意识到过,你的身体也具有面包圈的形状吧。事实上,任何有生命的物体,在其发育的最初阶段(胚胎阶段)都经历过“胚囊”这一过程。在这个阶段,它呈球形,当中横贯着一条宽阔的通道。食物从通道的一端进入,被生命体摄取了有用成分以后。剩下的物质从另一端排出。到了发育成熟阶段,这条内部通道就变得越来越细。越来越复杂,但最主要的性质依然如故,面包圈型体的所有几何性质也没有改变。
好啦,既然你自己也是一个面包圈,那么,现在试试按照图19A的逆过程把它翻回去--把你的身体(在思维中)变成内部有一条通道的双苹果。你会发现,你身体中各个彼此有些交错的部分组成了这个“双苹果”的果体,而整个宇宙,包括地球、月亮、太阳和星辰,都被挤进了内部的圆形隧道!
你还可以试画画看,看画成什么样子。如果你的成绩不错,那就连达利(SalvadoDali)本人也要承认你是超现实派的绘画权威了!(图20)
作者:wyhsillypig 回复日期:2004…12…27 17:36:00
这一节已经够长了,但我们还不能就此结束,还得讨论一下左手系和右手系物体,以及它们写窨的一般性质的关系。这个问题从一副手套起最为便当。一副手套有两只。把它们比较一下就会发现(图21)它们的所有尺寸都相同,然而,两只手套却有极大的不同:你决不能把左手那只手套戴到右手上,也不能把右手那只套在左手上。你尽管把它们扭来扭去,但左手套永远是左手套,右手套永远是右手套。另外,在鞋子的形状上,在汽车的操纵系统(美国的和英国的)上和在许多其他物体上,都可以看到左手系和右手系的区别。
另一方面,有些东西,如礼帽,网球拍等许多物体,就不存在这种差别。没有人会蠢到想去商店里买几只左手用的茶杯;如果有人叫你找邻居去借一把左手用的活动扳手,这也纯粹是在捉弄人。那么,这两类物体有什么区别呢?你想一想就会发现,在礼帽和茶杯等一类物体上都存在一个对称面,沿着这个面可将物体切成两个相等的部分。手套和鞋子就不存在这种对称面。你不妨试一试,无论怎么切,你都不能把一只手套割成两个相同的部分。如果某一类物体不具有对称面,我们就说它们是非对称的,而且就能把它们分成两类--左手系的与右手系的。这两系的差别不仅在手套这些人造的物体上表现出来,在自然界中也经常存在。例如,存在着两种蜗牛,它们在其它各个方面都一样,唯独给自己盖房子的方式不同:一种蜗牛的壳呈顺时针螺旋形,另一种呈逆时针螺旋形。就是在分子这种组成一切物质的微粒中,也象在左、右手手套和蜗牛壳的情况中一样,往往有左旋和右旋两种形态。当然,分子是肉眼看不见的,但是,这类分子所构成的物质的结晶形状和光学性质,都显示出这种不对称性。例如,糖就有两类,左旋糖和右旋糖;还有两类吃糖的细菌,每一类只吞吃与自己同类的糖,信不信由你。
从上述内容看来,要想把一个右手系物体(比如说一只手套)变成左手系物体,似乎是完全不可能的。真的是这样吗?能不能想象出某种可以实现这种变化的奇妙空间呢?我们从生活在平面上的扁片人的角度来解答这个问题,因为这样做,我们能站在较为优越的三维的地位上来考察各个方面。请看图22,图上描绘了扁片国--即仅有两维的空间--的几个可能的代表。那个手里提着一串葡萄站立的人可以叫做“正面人”因为他只有“正面”而没有“侧身”。他旁边的动物则是一头“侧身驴”,说得更严格一点,是一头“右侧身驴”。当然,我们也可以画出一头“左侧身驴”来。这时,由于这两头驴都局限在这个面上,从两维的观点来看,它们的不同正如在三维空间中的左、右手手套一样。你不能使左、右两头驴头并头地叠在一起,因为如果要它们鼻子挨着鼻子、尾巴挨着尾巴,其中就得有一头翻个肚皮朝天才行,这样,它可就四脚朝天,无法立足喽。
图22 生活在曲面上的二维“扁片生物”就是这个样子的。不过,这类生物很不“现实”。那个人有正面而无侧面,他不能把手里的葡萄放进自己的嘴里。那头驴子吃起葡萄来倒是挺便当,但它只能朝右走,如果它要向左去,就只好退着走。驴子倒是常往后退的,不过这毕竟不那么象样。
不过,如果把一头驴子从面上取下来,在空间中掉转一下,再放回面上来,两头驴子就都一样了。与此相似,我们也可以说,如果把一只右手手套从我们这个空间中拿到四维空间中,用适当的方式旋转一下再放回来,它就会变成一只左手手套。但是,我们这个物理空间并没有第四维存在,所以必须认为上述方法是不可能实现的。那么,有没有别的方法呢?
让我们还回到二维世界上来。不过,我们要把图22那样的一般平面,换成所谓的梅比乌斯(Mobius)面。这种曲面是以一个世纪以前第一个对这种面进行研究的德国数学家来命名的。它很容易得到:拿一长条普通纸,把一端拧一个弯后,将两端对粘成一个环。从图23上可看出这个环该如何做。这种面有许多特殊的性质,其中有一点是很容易发现的:拿一把剪刀平行于边缘的中线剪一圈(沿图23上的箭头),你一定会预言,这一来会把这个环剪成两个独立的环;但做一下看看,你就会发现你想错了:得到的不是两个环,而是一个环,它比原来那个长一倍,窄一半!
让我们看看,一头扁片驴沿莫比乌斯面走一圈会发生什么。假定它从位置1(图23)开始,这时看来它是头“左侧身驴”。从图上可以清楚地看出,它走啊走,越过了位置2,位置3,最后又接近了出发点。但是,不单是你觉得奇怪,连它自己也觉得不对劲,它竟然处在蹄子朝上的古怪位置。当然,它能在面内转一下,蹄子又落了地,但这样一来,头的方向又不对了。
总之,当沿梅比乌斯面走一圈后,我们的“左侧面驴”变成了“右侧面驴”。要记住,这是在驴子一直处在面上而从未取出来在空间旋转的情况下发生的。于是我们发现,在一个扭曲的面上,左、右手系物体都可在通过扭曲处时发生转换。图23所示的梅比乌斯面是被称作“克莱茵瓶”的更有一般性的曲面的一部分(克莱茵瓶如图23所示)。这种“瓶”有一个面,它自我封闭而没有明显的边界。如果这种面在四维空间内是可能的,那么,同样的情况也能在三维空间发生,当然,这要求空间有一个适当的扭曲。要想象空间中的梅比乌斯扭曲自然决非易事。我们不能象看扁片驴那样从外部来看我们自己的这个空间,而从内部看又往往是看不清的。但是,天文空间并非不可能自我封闭,并有一个梅比乌斯式扭曲的。
如果情况确实如此,那么,环游宇宙的旅行家将会带着一颗位于右胸腔的心脏回到地球上来。手套和鞋子制造商兴许能由简化生产过程而获得一些好处。因为他们只需制造清一式的鞋子和手套,然后把一半产品装入飞船,让它们绕行宇宙一周,这样它们就能套进另一边的手脚了。
我们就用这个奇想来结束有关不寻常空间的不寻常性质的讨论吧。
第四章 四维世界
1、时间是第四维
关于第四维的概念经常被认为是很神秘、很值得怀疑的。我们这些只有宽度、厚度和高度的生物,怎么竟敢奢谈什么四维空间呢?从我们三维的头脑里能想象出四维情景吗?一个四维的正方体或四维的球体该是什么样子呢?当我们说的是“想象”一头鼻里喷火、尾上披鳞的巨龙、或一架翼上设有游泳池和两个网球场的超级客机时,实际上只不过是在头脑中描绘这些东西果真出现在我们面前时的样子。我们描绘这种图象的背景,仍然是大家所熟悉的、包括一切普通物体--连同我们本身在内--的三维空间。如果说这就是“想象”这个词的念义,那我们就想象不了出现在三维空间背景上的四维物体是什么样子了,正如同我们不可能将一个三维物体压进一个平面那样。不过且慢,我们「确实」可以在平面上画出三物体来,因而在某种意义,可以说是将一个三维物体压进了平面。然而,这种压法可不是用水压机或诸如此类的物理力来实现,而是用“几何投影”的方法进行的。用这两种方法将物体(以马为例)压进平面的差别,可以立即从图24上看出来。
用类比的方法,现在我们可以说,尽管不能把一个四维物体完完全全“压进”三维空间,但我们能够讨论各种四维物体在三维空间中的“投影”。不过要记住,四维物体在三维空间中的投影是立体图形,如同三维物体在平面上的投影图形一样。
为了更好地了解这个问题,让我们先考虑一下,生活在平面上的二维扁片人是如何领悟三维立方体的概念的。不难想象,作为三维空间的生物,我们有一个优越之处,即可以从二维空间的上方、即第三个方向上来观察平面上的世界。将它“投影”到平面上。旋转这个立方体,可以得到各式各样的投影。观察这些投影,我们那些二维的扁片朋友就多少能对这个叫做“三维立方体”的神秘图形的性质形成某些概念。他们仅是观看投影,他们也会说出这个东西有八个顶点、十二条边等等。现在请看图16,你将发现,你和那些只能从平面上琢磨立方体投影的扁片人一样处于困难的境地了。事实上,图中那一家人如此惊愕地研究的那个古怪复杂的玩艺,正是一个四维超正方体在我们这个普通三维空间中的投影。
仔细端详这个形体;你很容易发现;它与图25中令扁片人惊讶不止的图形具有相同的特征:普通立方体在平面上的投影是两个正方形;一个套在另一个里面(录入者:想象一下;使用点光源;我们把这个立方体想象成用铁丝做成的立方体框架;点光源在这个框架的一个面的正上方;投影面在正下方);并且顶点和顶点都相连;超正方体在一般窨中的投影则由两个立方体构成;一个套在另一个里面;顶点也相连。数一数就知道;这个超正方体共有16个顶点;32条棱和24个面。好一个正方体啊;是吧?
让我们再来看看四维球体是什么样的。为此,我们最好还是先看一个较为熟悉的例子,即一个普通圆球在平面上的投影。不妨设想将一个标出陆地和海洋的透明球投射到一堵白墙上(图27)。在这个投影上,两个半球当然重叠在一起,而且,从投影上看,美国的纽约和中国的北京离得很近。但这只是个表面印象,实际上,投影上的每一个点都代表球上两个相对的点,而一架从纽约飞到北京的收音机其投影则先移动到球体投影的边缘,然后再一直退回来。尽管从图上看来,两架收音机的航线相重合,但如果它们“确实”分别在两 个半球上飞行,那是不会相撞的。
这就是普通�