±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > science of logic >

µÚ67ÕÂ

science of logic-µÚ67ÕÂ

С˵£º science of logic ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




This¡¡constitutes¡¡the¡¡finitude¡¡of¡¡this¡¡cognition£»¡¡because¡¡this¡¡real¡¡side¡¡of¡¡the¡¡Idea¡¡in¡¡it¡¡still¡¡possesses
identity¡¡as¡¡an¡¡inner¡¡identity£»¡¡its¡¡determinations¡¡are¡¡to¡¡themselves¡¡still¡¡external£»¡¡because¡¡the¡¡identity
is¡¡not¡¡in¡¡the¡¡form¡¡of¡¡subjectivity£»¡¡the¡¡Notion's¡¡own¡¡pervasion¡¡of¡¡the¡¡object¡¡still¡¡lacks¡¡individuality£»
what¡¡corresponds¡¡to¡¡the¡¡Notion¡¡in¡¡the¡¡object¡¡is¡¡indeed¡¡no¡¡longer¡¡the¡¡abstract¡¡but¡¡the¡¡determinate
form¡¡and¡¡therefore¡¡the¡¡particularity¡¡of¡¡the¡¡Notion£»¡¡but¡¡the¡¡individual¡¡element¡¡in¡¡the¡¡object¡¡is¡¡still
a¡¡given¡¡content¡£¡¡Consequently£»¡¡although¡¡this¡¡cognition¡¡transforms¡¡the¡¡objective¡¡world¡¡into
Notions£»¡¡it¡¡gives¡¡it¡¡Notion¡­determinations¡¡only¡¡in¡¡respect¡¡of¡¡form£»¡¡and¡¡must¡¡find¡¡the¡¡object¡¡in
respect¡¡of¡¡its¡¡individuality£»¡¡its¡¡specific¡¡determinateness£»¡¡such¡¡cognition¡¡is¡¡not¡¡yet¡¡self¡­determining¡£
Similarly£»¡¡it¡¡finds¡¡propositions¡¡and¡¡laws£»¡¡and¡¡proves¡¡their¡¡necessity£»¡¡but¡¡not¡¡as¡¡a¡¡necessity¡¡of¡¡the
subject¡¡matter¡¡in¡¡and¡¡for¡¡itself£»¡¡that¡¡is£»¡¡not¡¡from¡¡the¡¡Notion£»¡¡but¡¡as¡¡a¡¡necessity¡¡of¡¡the¡¡cognition¡¡that
works¡¡on¡¡given¡¡determinations£»¡¡on¡¡the¡¡differences¡¡of¡¡the¡¡phenomenal¡¡aspect¡¡of¡¡the¡¡subject¡¡matter£»
and¡¡cognises¡¡for¡¡itself¡¡the¡¡proposition¡¡as¡¡a¡¡unity¡¡and¡¡relationship£»¡¡or¡¡cognises¡¡the¡¡ground¡¡of
phenomena¡¡from¡¡the¡¡phenomena¡¡themselves¡£

We¡¡have¡¡now¡¡to¡¡consider¡¡the¡¡detailed¡¡moments¡¡of¡¡synthetic¡¡cognition¡£

1¡£¡¡Definition

First£»¡¡the¡¡still¡¡given¡¡objectivity¡¡is¡¡transformed¡¡into¡¡the¡¡simple¡¡and¡¡first¡¡form£»¡¡hence¡¡into¡¡the¡¡form¡¡of
the¡¡Notion¡£¡¡Accordingly¡¡the¡¡moments¡¡of¡¡this¡¡apprehension¡¡are¡¡none¡¡other¡¡than¡¡the¡¡moments¡¡of¡¡the
Notion£»¡¡universality£»¡¡particularity¡¡and¡¡individuality¡£¡¡The¡¡individual¡¡is¡¡the¡¡object¡¡itself¡¡as¡¡an
immediate¡¡representation£»¡¡that¡¡which¡¡is¡¡to¡¡be¡¡defined¡£¡¡The¡¡universality¡¡of¡¡the¡¡object¡¡of¡¡definition
we¡¡have¡¡found¡¡in¡¡the¡¡determination¡¡of¡¡the¡¡objective¡¡judgement¡¡or¡¡judgement¡¡of¡¡necessity¡¡to¡¡be¡¡the
genus£»¡¡and¡¡indeed¡¡the¡¡proximate¡¡genus£»¡¡that¡¡is¡¡to¡¡say£»¡¡the¡¡universal¡¡with¡¡this¡¡determinateness¡¡that
is¡¡at¡¡the¡¡same¡¡time¡¡a¡¡principle¡¡for¡¡the¡¡differentiation¡¡of¡¡the¡¡particular¡£¡¡This¡¡difference¡¡the¡¡object
possesses¡¡in¡¡the¡¡specific¡¡difference£»¡¡which¡¡makes¡¡it¡¡the¡¡determinate¡¡species¡¡it¡¡is¡¡and¡¡is¡¡the¡¡basis
of¡¡its¡¡disjunction¡¡from¡¡the¡¡remaining¡¡species¡£

Definition£»¡¡in¡¡thus¡¡reducing¡¡the¡¡subject¡¡matter¡¡to¡¡its¡¡Notion£»¡¡strips¡¡it¡¡of¡¡its¡¡externalities¡¡which¡¡are
requisite¡¡for¡¡its¡¡concrete¡¡existence£»¡¡it¡¡abstracts¡¡from¡¡what¡¡accrues¡¡to¡¡the¡¡Notion¡¡in¡¡its¡¡realisation£»
whereby¡¡it¡¡emerges¡¡first¡¡into¡¡Idea£»¡¡and¡¡secondly¡¡into¡¡external¡¡existence¡£¡¡Description¡¡is¡¡for
representation£»¡¡and¡¡takes¡¡in¡¡this¡¡further¡¡content¡¡that¡¡belongs¡¡to¡¡reality¡£¡¡But¡¡definition¡¡reduces¡¡this
wealth¡¡of¡¡the¡¡manifold¡¡determinations¡¡of¡¡intuited¡¡existence¡¡to¡¡the¡¡simplest¡¡moments£»¡¡the¡¡form¡¡of
these¡¡simple¡¡elements£»¡¡and¡¡how¡¡they¡¡are¡¡determined¡¡relatively¡¡to¡¡one¡¡another£»¡¡is¡¡contained¡¡in¡¡the
Notion¡£¡¡The¡¡subject¡¡matter¡¡is¡¡thus£»¡¡as¡¡we¡¡have¡¡stated£»¡¡grasped¡¡as¡¡a¡¡universal¡¡that¡¡is¡¡at¡¡the¡¡same
time¡¡essentially¡¡determinate¡£¡¡The¡¡subject¡¡matter¡¡itself¡¡is¡¡the¡¡third¡¡factor£»¡¡the¡¡individual£»¡¡in¡¡which¡¡the
genus¡¡and¡¡the¡¡particularisation¡¡are¡¡posited¡¡in¡¡one£»¡¡it¡¡is¡¡an¡¡immediate¡¡that¡¡is¡¡posited¡¡outside¡¡the
Notion£»¡¡since¡¡the¡¡latter¡¡is¡¡not¡¡yet¡¡self¡­determining¡£

In¡¡the¡¡said¡¡moments£»¡¡which¡¡are¡¡the¡¡form¡­difference¡¡of¡¡definition£»¡¡the¡¡Notion¡¡finds¡¡itself¡¡and¡¡has¡¡in
them¡¡the¡¡reality¡¡correspondent¡¡to¡¡it¡£¡¡But¡¡the¡¡reflection¡¡of¡¡the¡¡Notion¡­moments¡¡into¡¡themselves£»
which¡¡is¡¡individuality£»¡¡is¡¡not¡¡yet¡¡contained¡¡in¡¡this¡¡reality£»¡¡and¡¡therefore¡¡the¡¡object£»¡¡in¡¡so¡¡far¡¡as¡¡it¡¡is¡¡in
cognition£»¡¡is¡¡not¡¡yet¡¡determined¡¡as¡¡subjective¡£¡¡Whereas£»¡¡cognition¡¡on¡¡the¡¡contrary¡¡is¡¡subjective¡¡and
has¡¡an¡¡external¡¡starting¡¡point£»¡¡or¡¡it¡¡is¡¡subjective¡¡by¡¡reason¡¡of¡¡its¡¡external¡¡starting¡¡point¡¡in¡¡the
individual¡£¡¡The¡¡content¡¡of¡¡the¡¡Notion¡¡is¡¡therefore¡¡a¡¡datum¡¡and¡¡contingent¡£¡¡Consequently£»¡¡the
concrete¡¡Notion¡¡itself¡¡is¡¡contingent¡¡in¡¡a¡¡twofold¡¡aspect£º¡¡first¡¡it¡¡is¡¡contingent¡¡in¡¡respect¡¡of¡¡its¡¡content
as¡¡such£»¡¡secondly¡¡it¡¡is¡¡contingent¡¡which¡¡determinations¡¡of¡¡the¡¡content¡¡from¡¡among¡¡the¡¡manifold
qualities¡¡that¡¡the¡¡object¡¡possesses¡¡in¡¡external¡¡existence¡¡are¡¡to¡¡be¡¡selected¡¡for¡¡the¡¡Notion¡¡and¡¡are
to¡¡constitute¡¡its¡¡moments¡£

The¡¡latter¡¡point¡¡requires¡¡closer¡¡consideration¡£¡¡For¡¡since¡¡individuality£»¡¡which¡¡is¡¡determined¡¡in¡¡and
for¡¡itself£»¡¡lies¡¡outside¡¡the¡¡Notion¡­determination¡¡peculiar¡¡to¡¡synthetic¡¡cognition¡¡there¡¡is¡¡no¡¡principle
available¡¡for¡¡determining¡¡which¡¡sides¡¡of¡¡the¡¡subject¡¡matter¡¡are¡¡to¡¡be¡¡regarded¡¡as¡¡belonging¡¡to¡¡its
Notion¡­determination¡¡and¡¡which¡¡merely¡¡to¡¡the¡¡external¡¡reality¡£¡¡This¡¡constitutes¡¡a¡¡difficulty¡¡in¡¡the
case¡¡of¡¡definitions£»¡¡a¡¡difficulty¡¡that¡¡for¡¡synthetic¡¡cognition¡¡cannot¡¡be¡¡overcome¡£¡¡Yet¡¡here¡¡a
distinction¡¡must¡¡be¡¡made¡£¡¡In¡¡the¡¡first¡¡place£»¡¡the¡¡definition¡¡of¡¡products¡¡of¡¡self¡­conscious
purposiveness¡¡is¡¡easily¡¡discovered£»¡¡for¡¡the¡¡end¡¡that¡¡they¡¡are¡¡to¡¡serve¡¡is¡¡a¡¡determination¡¡created¡¡out
of¡¡the¡¡subjective¡¡resolve¡¡and¡¡constituting¡¡the¡¡essential¡¡particularisation£»¡¡the¡¡form¡¡of¡¡the¡¡concrete
existent¡¡thing£»¡¡which¡¡is¡¡here¡¡the¡¡sole¡¡concern¡£¡¡Apart¡¡from¡¡this£»¡¡the¡¡nature¡¡of¡¡its¡¡material¡¡and¡¡its
other¡¡external¡¡properties£»¡¡in¡¡so¡¡far¡¡as¡¡they¡¡correspond¡¡to¡¡the¡¡end£»¡¡are¡¡contained¡¡in¡¡its
determination£»¡¡the¡¡rest¡¡are¡¡unessential¡¡for¡¡it¡£

Secondly£»¡¡geometrical¡¡objects¡¡are¡¡abstract¡¡determinations¡¡of¡¡space£»¡¡the¡¡underlying¡¡abstraction£»
so¡­called¡¡absolute¡¡space£»¡¡has¡¡lost¡¡all¡¡further¡¡concrete¡¡determinations¡¡and¡¡now¡¡too¡¡possesses¡¡only
such¡¡shapes¡¡and¡¡configurations¡¡as¡¡are¡¡posited¡¡in¡¡it¡£¡¡These¡¡objects¡¡therefore¡¡are¡¡only¡¡what¡¡they¡¡are
meant¡¡to¡¡be£»¡¡their¡¡Notion¡¡determination¡¡in¡¡general£»¡¡and¡¡more¡¡precisely¡¡the¡¡specific¡¡difference£»
possesses¡¡in¡¡them¡¡its¡¡simple¡¡unhindered¡¡reality¡£¡¡To¡¡this¡¡extent£»¡¡they¡¡resemble¡¡the¡¡products¡¡of
external¡¡purposiveness£»¡¡and¡¡they¡¡also¡¡agree¡¡with¡¡the¡¡subject¡¡matter¡¡of¡¡arithmetic¡¡in¡¡which¡¡likewise
the¡¡underlying¡¡determination¡¡is¡¡only¡¡that¡¡which¡¡has¡¡been¡¡posited¡¡in¡¡it¡£¡¡True£»¡¡space¡¡has¡¡still¡¡further
determinations£º¡¡its¡¡three¡­dimensionality£»¡¡its¡¡continuity¡¡and¡¡divisibility£»¡¡which¡¡are¡¡not¡¡first¡¡posited¡¡in
it¡¡by¡¡external¡¡determination¡£¡¡But¡¡these¡¡belong¡¡to¡¡the¡¡accepted¡¡material¡¡and¡¡are¡¡immediate
presuppositions£»¡¡it¡¡is¡¡only¡¡the¡¡combination¡¡and¡¡entanglement¡¡of¡¡the¡¡former¡¡subjective
determinations¡¡with¡¡this¡¡peculiar¡¡nature¡¡of¡¡the¡¡domain¡¡into¡¡which¡¡they¡¡have¡¡been¡¡imported¡¡that
produces¡¡synthetic¡¡relationships¡¡and¡¡laws¡£¡¡In¡¡the¡¡case¡¡of¡¡numerical¡¡determinations£»¡¡since¡¡they¡¡are
based¡¡on¡¡the¡¡simple¡¡principle¡¡of¡¡the¡¡One£»¡¡their¡¡combination¡¡and¡¡any¡¡further¡¡determination¡¡is¡¡simply
and¡¡solely¡¡a¡¡positedness£»¡¡on¡¡the¡¡other¡¡hand£»¡¡determinations¡¡in¡¡space£»¡¡which¡¡is¡¡explicitly¡¡a
continuous¡¡mutual¡¡externality£»¡¡run¡¡a¡¡further¡¡course¡¡of¡¡their¡¡own¡¡and¡¡possess¡¡a¡¡reality¡¡distinct
from¡¡their¡¡Notion£»¡¡but¡¡this¡¡no¡¡longer¡¡belongs¡¡to¡¡the¡¡immediate¡¡definition¡£

But£»¡¡thirdly£»¡¡in¡¡the¡¡case¡¡of¡¡definitions¡¡of¡¡concrete¡¡objects¡¡of¡¡Nature¡¡as¡¡well¡¡as¡¡of¡¡spirit£»¡¡the¡¡position
is¡¡quite¡¡different¡£¡¡In¡¡general¡¡such¡¡objects¡¡are£»¡¡for¡¡representation£»¡¡things¡¡of¡¡many¡¡properties¡£
Here£»¡¡what¡¡we¡¡have¡¡to¡¡do¡¡in¡¡the¡¡first¡¡instance¡¡is¡¡to¡¡apprehend¡¡what¡¡is¡¡their¡¡proximate¡¡genus£»¡¡and
then£»¡¡what¡¡is¡¡their¡¡specific¡¡difference¡£¡¡We¡¡have¡¡therefore¡¡to¡¡determine¡¡which¡¡of¡¡the¡¡many
properties¡¡belong¡¡to¡¡the¡¡object¡¡as¡¡genus£»¡¡and¡¡which¡¡as¡¡species£»¡¡and¡¡further¡¡which¡¡among¡¡these
properties¡¡is¡¡the¡¡essential¡¡one£»¡¡this¡¡last¡¡point¡¡involves¡¡the¡¡necessity¡¡of¡¡ascertaining¡¡their
interrelationship£»¡¡whether¡¡one¡¡is¡¡already¡¡posited¡¡with¡¡the¡¡other¡£¡¡But¡¡for¡¡this¡¡purpose¡¡there¡¡is¡¡so¡¡far
no¡¡other¡¡criterion¡¡to¡¡hand¡¡than¡¡existence¡¡itself¡£¡¡The¡¡essentiality¡¡of¡¡the¡¡property¡¡for¡¡the¡¡purpose¡¡of
the¡¡definition£»¡¡in¡¡which¡¡it¡¡is¡¡to¡¡be¡¡posited¡¡as¡¡a¡¡simple£»¡¡undeveloped¡¡determinateness£»¡¡is¡¡its
universality¡£¡¡But¡¡in¡¡existence¡¡universality¡¡is¡¡merely¡¡empirical¡£¡¡It¡¡may¡¡be¡¡universality¡¡in¡¡time¡­whether
the¡¡property¡¡in¡¡question¡¡is¡¡lasting£»¡¡while¡¡the¡¡others¡¡show¡¡themselves¡¡transitory¡¡in¡¡the¡¡subsistence¡¡of
the¡¡whole£»¡¡or¡¡it¡¡may¡¡be¡¡a¡¡universality¡¡resulting¡¡from¡¡comparison¡¡with¡¡other¡¡concrete¡¡wholes¡¡and¡¡in
that¡¡case¡¡it¡¡goes¡¡no¡¡further¡¡than¡¡community¡£¡¡Now¡¡if¡¡comparison¡¡indicates¡¡as¡¡the¡¡common¡¡basis¡¡the
total¡¡habitue¡¡as¡¡empirically¡¡presented£»¡¡reflection¡¡has¡¡to¡¡bring¡¡this¡¡together¡¡into¡¡a¡¡simple¡¡thought
determination¡¡and¡¡to¡¡grasp¡¡the¡¡simple¡¡character¡¡of¡¡such¡¡a¡¡totality¡£¡¡But¡¡the¡¡only¡¡possible¡¡attestation
that¡¡a¡¡thought¡¡determination£»¡¡or¡¡a¡¡single¡¡one¡¡of¡¡the¡¡immediate¡¡properties£»¡¡constitutes¡¡the¡¡si

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ