science of logic-µÚ50ÕÂ
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
defined¡¡as¡¡a¡¡thing¡¡with¡¡properties£»¡¡as¡¡a¡¡whole¡¡consisting¡¡of¡¡parts£»¡¡as¡¡a¡¡substance¡¡with¡¡accidents£»¡¡or
in¡¡terms¡¡of¡¡other¡¡relationships¡¡of¡¡reflection£»¡¡but¡¡these¡¡relationships¡¡have¡¡been¡¡altogether
superseded¡¡already¡¡in¡¡the¡¡Notion£»¡¡the¡¡object¡¡therefore¡¡has¡¡neither¡¡properties¡¡nor¡¡accidents£»¡¡for
these¡¡are¡¡separable¡¡from¡¡the¡¡thing¡¡or¡¡the¡¡substance£»¡¡whereas¡¡in¡¡the¡¡object¡¡the¡¡particularity¡¡is
absolutely¡¡reflected¡¡into¡¡the¡¡totality¡£¡¡In¡¡the¡¡parts¡¡of¡¡a¡¡whole£»¡¡there¡¡is¡¡indeed¡¡present¡¡that
self¡subsistence¡¡which¡¡belongs¡¡to¡¡the¡¡differences¡¡of¡¡the¡¡object£»¡¡but¡¡these¡¡differences¡¡are
themselves¡¡directly¡¡and¡¡essentially¡¡objects£»¡¡totalities£»¡¡that¡¡are¡¡not£»¡¡like¡¡parts£»¡¡determined¡¡as¡¡such¡¡in
contrast¡¡to¡¡the¡¡whole¡£
The¡¡object¡¡is¡¡therefore¡¡in¡¡the¡¡first¡¡instance¡¡indeterminate£»¡¡in¡¡so¡¡far¡¡as¡¡it¡¡has¡¡no¡¡determinate
opposition¡¡in¡¡it£»¡¡for¡¡it¡¡is¡¡the¡¡mediation¡¡that¡¡has¡¡collapsed¡¡into¡¡immediate¡¡identity¡£¡¡In¡¡so¡¡far¡¡as¡¡the
Notion¡¡is¡¡essentially¡¡determinate£»¡¡the¡¡object¡¡possesses¡¡determinateness¡¡as¡¡a¡¡manifoldness
which¡¡though¡¡complete¡¡is¡¡otherwise¡¡indeterminate£»¡¡that¡¡is£»¡¡contains¡¡no¡¡relationships£»¡¡and¡¡which
constitutes¡¡a¡¡totality¡¡that¡¡at¡¡first¡¡is¡¡similarly¡¡no¡¡further¡¡determined£»¡¡sides¡¡or¡¡parts¡¡that¡¡may¡¡be
distinguished¡¡in¡¡it¡¡belong¡¡to¡¡an¡¡external¡¡reflection¡£¡¡This¡¡quite¡¡indeterminate¡¡difference¡¡therefore
means¡¡only¡¡that¡¡there¡¡are¡¡a¡¡number¡¡of¡¡objects£»¡¡each¡¡of¡¡which¡¡only¡¡contains¡¡its¡¡determinateness
reflected¡¡into¡¡its¡¡universality¡¡and¡¡does¡¡not¡¡reflect¡¡itself¡¡outwards¡£¡¡Because¡¡this¡¡indeterminate
determinateness¡¡is¡¡essential¡¡to¡¡the¡¡object£»¡¡the¡¡latter¡¡is¡¡within¡¡itself¡¡a¡¡plurality¡¡of¡¡this¡¡kind£»¡¡and¡¡must
therefore¡¡be¡¡regarded¡¡as¡¡a¡¡composite¡¡or¡¡aggregate¡£¡¡It¡¡does¡¡not¡¡however¡¡consist¡¡of¡¡atoms£»¡¡for
these¡¡are¡¡not¡¡objects¡¡because¡¡they¡¡are¡¡not¡¡totalities¡£¡¡The¡¡Leibnizian¡¡monad¡¡would¡¡be¡¡more¡¡of¡¡an
object¡¡since¡¡it¡¡is¡¡a¡¡total¡¡representation¡¡of¡¡the¡¡world£»¡¡but¡¡confined¡¡within¡¡its¡¡intensive¡¡subjectivity
it¡¡is¡¡supposed¡¡at¡¡least¡¡to¡¡be¡¡essentially¡¡one¡¡within¡¡itself¡£¡¡Nevertheless£»¡¡the¡¡monad¡¡determined¡¡as¡¡an
exclusive¡¡one¡¡is¡¡only¡¡a¡¡principle¡¡that¡¡reflection¡¡assumes¡£¡¡Yet¡¡the¡¡monad¡¡is¡¡an¡¡object£»¡¡partly¡¡in
that¡¡the¡¡ground¡¡of¡¡its¡¡manifold¡¡representations¡¡¡ª¡¡of¡¡the¡¡developed£»¡¡that¡¡is£»¡¡the¡¡posited
determinations¡¡of¡¡its¡¡merely¡¡implicit¡¡totality¡¡lies¡¡outside¡¡it£»¡¡and¡¡partly¡¡also¡¡in¡¡that¡¡it¡¡is¡¡indifferent
to¡¡the¡¡monad¡¡that¡¡it¡¡constitutes¡¡an¡¡object¡¡along¡¡with¡¡others£»¡¡it¡¡is¡¡thus¡¡in¡¡fact¡¡not¡¡exclusive¡¡or
determined¡¡for¡¡itself¡£
2¡£¡¡As¡¡the¡¡object£»¡¡then£»¡¡in¡¡its¡¡determined¡¡being¡¡is¡¡a¡¡totality¡¡and¡¡yet¡¡on¡¡account¡¡of¡¡its
indeterminateness¡¡and¡¡immediacy¡¡is¡¡not¡¡the¡¡negative¡¡unity¡¡of¡¡that¡¡determined¡¡being£»¡¡it¡¡is
indifferent¡¡to¡¡the¡¡determinations¡¡as¡¡individual£»¡¡as¡¡determined¡¡in¡¡and¡¡for¡¡themselves£»¡¡just¡¡as
these¡¡latter¡¡are¡¡themselves¡¡indifferent¡¡to¡¡one¡¡another¡£¡¡These£»¡¡therefore£»¡¡are¡¡not¡¡comprehensible
from¡¡it¡¡nor¡¡from¡¡one¡¡another£»¡¡its¡¡totality¡¡is¡¡the¡¡form¡¡of¡¡general¡¡reflectedness¡¡of¡¡its¡¡manifoldness¡¡into
individuality¡¡in¡¡general¡¡which¡¡is¡¡in¡¡its¡¡own¡¡self¡¡indeterminate¡£¡¡The¡¡determinatenesses£»¡¡therefore£»¡¡that
it¡¡contains£»¡¡do¡¡indeed¡¡belong¡¡to¡¡it£»¡¡but¡¡the¡¡form¡¡that¡¡constitutes¡¡their¡¡difference¡¡and¡¡combines¡¡them
into¡¡a¡¡unity¡¡is¡¡an¡¡external£»¡¡indifferent¡¡one£»¡¡whether¡¡it¡¡be¡¡a¡¡mixture£»¡¡or¡¡again¡¡an¡¡order£»¡¡a¡¡certain
arrangement¡¡of¡¡parts¡¡and¡¡sides£»¡¡all¡¡these¡¡are¡¡combinations¡¡that¡¡are¡¡indifferent¡¡to¡¡what¡¡is¡¡so
related¡£
Thus¡¡the¡¡object£»¡¡like¡¡any¡¡determinate¡¡being¡¡in¡¡general£»¡¡has¡¡the¡¡determinateness¡¡of¡¡its¡¡totality
outside¡¡it¡¡in¡¡other¡¡objects£»¡¡and¡¡these¡¡in¡¡turn¡¡have¡¡theirs¡¡outside¡¡them£»¡¡and¡¡so¡¡on¡¡to¡¡infinity¡£¡¡The
return¡into¡self¡¡of¡¡this¡¡progression¡¡to¡¡infinity¡¡must¡¡indeed¡¡likewise¡¡be¡¡assumed¡¡and¡¡represented¡¡as
a¡¡totality£»¡¡a¡¡world£»¡¡but¡¡that¡¡world¡¡is¡¡nothing¡¡but¡¡the¡¡universality¡¡that¡¡is¡¡confined¡¡within¡¡itself¡¡by
indeterminate¡¡individuality£»¡¡that¡¡is£»¡¡a¡¡universe¡£
The¡¡object£»¡¡therefore£»¡¡being¡¡in¡¡its¡¡determinateness¡¡equally¡¡indifferent¡¡to¡¡it£»¡¡it¡¡is¡¡the¡¡object's¡¡own
nature¡¡that¡¡points¡¡it¡¡outside¡¡and¡¡beyond¡¡itself¡¡to¡¡other¡¡objects¡¡for¡¡its¡¡determination£»¡¡but¡¡to¡¡these
others£»¡¡their¡¡determinant¡¡function¡¡is¡¡similarly¡¡a¡¡matter¡¡of¡¡indifference¡£¡¡Consequently£»¡¡a¡¡principle
of¡¡self¡determination¡¡is¡¡nowhere¡¡to¡¡be¡¡found£»¡¡determinism¡¡¡ª¡¡the¡¡standpoint¡¡occupied¡¡by
cognition¡¡when¡¡it¡¡takes¡¡the¡¡object£»¡¡just¡¡as¡¡we¡¡have¡¡found¡¡it¡¡here£»¡¡to¡¡be¡¡the¡¡truth¡¡¡ª¡¡assigns¡¡for¡¡each
determination¡¡of¡¡the¡¡object¡¡that¡¡of¡¡another¡¡object£»¡¡but¡¡this¡¡other¡¡is¡¡likewise¡¡indifferent¡¡both¡¡to¡¡its
being¡¡determined¡¡and¡¡to¡¡its¡¡active¡¡determining¡£¡¡For¡¡this¡¡reason¡¡determinism¡¡itself¡¡is¡¡also
indeterminate¡¡in¡¡the¡¡sense¡¡that¡¡it¡¡involves¡¡the¡¡progression¡¡to¡¡infinity£»¡¡it¡¡can¡¡halt¡¡and¡¡be¡¡satisfied¡¡at
any¡¡point¡¡at¡¡will£»¡¡because¡¡the¡¡object¡¡it¡¡has¡¡reached¡¡in¡¡its¡¡progress£»¡¡being¡¡a¡¡formal¡¡totality£»¡¡is¡¡shut¡¡up
within¡¡itself¡¡and¡¡indifferent¡¡to¡¡its¡¡being¡¡determined¡¡by¡¡another¡£¡¡Consequently£»¡¡the¡¡explanation¡¡of
the¡¡determination¡¡of¡¡an¡¡object¡¡and¡¡the¡¡progressive¡¡determining¡¡of¡¡the¡¡object¡¡made¡¡for¡¡the¡¡purpose
of¡¡the¡¡explanation£»¡¡is¡¡only¡¡an¡¡empty¡¡word£»¡¡since¡¡in¡¡the¡¡other¡¡object¡¡to¡¡which¡¡it¡¡advances¡¡there
resides¡¡no¡¡self¡determination¡£
3¡£¡¡Now¡¡as¡¡the¡¡determinateness¡¡of¡¡an¡¡object¡¡lies¡¡in¡¡an¡¡other£»¡¡no¡¡determinate¡¡difference¡¡is¡¡to¡¡be
found¡¡between¡¡them£»¡¡the¡¡determinateness¡¡is¡¡merely¡¡doubled£»¡¡once¡¡in¡¡one¡¡object¡¡and¡¡again¡¡in¡¡the
other£»¡¡something¡¡utterly¡¡identical£»¡¡so¡¡that¡¡the¡¡explanation¡¡or¡¡comprehension¡¡is¡¡tautological¡£¡¡This
tautology¡¡is¡¡an¡¡external¡¡futile¡¡see¡saw£»¡¡since¡¡the¡¡determinateness¡¡obtains¡¡from¡¡the¡¡objects¡¡which
are¡¡indifferent¡¡to¡¡it¡¡no¡¡peculiar¡¡distinctiveness¡¡and¡¡is¡¡therefore¡¡only¡¡identical£»¡¡there¡¡is¡¡before¡¡us¡¡only
one¡¡determinateness£»¡¡and¡¡its¡¡being¡¡doubled¡¡expresses¡¡just¡¡this¡¡externality¡¡and¡¡nullity¡¡of¡¡a
difference¡£¡¡But¡¡at¡¡the¡¡same¡¡time¡¡the¡¡objects¡¡are¡¡self¡subsistent¡¡in¡¡regard¡¡to¡¡one¡¡another£»¡¡therefore
in¡¡the¡¡identity¡¡above¡mentioned¡¡they¡¡remain¡¡absolutely¡¡external¡¡to¡¡one¡¡another¡£¡¡Here£»¡¡then£»¡¡we
have¡¡the¡¡manifest¡¡contradiction¡¡between¡¡the¡¡complete¡¡mutual¡¡indifference¡¡of¡¡the¡¡objects¡¡and¡¡the
identity¡¡of¡¡their¡¡determinateness£»¡¡or¡¡the¡¡contradiction¡¡of¡¡their¡¡complete¡¡externality¡¡in¡¡the
identity¡¡of¡¡their¡¡determinateness¡£¡¡This¡¡contradiction¡¡is£»¡¡therefore£»¡¡the¡¡negative¡¡unity¡¡of¡¡a¡¡number
of¡¡objects¡¡which£»¡¡in¡¡that¡¡unity£»¡¡simply¡¡repel¡¡one¡¡another£º¡¡this¡¡is¡¡the¡¡mechanical¡¡process¡£
B¡£¡¡The¡¡Mechanical¡¡Process
If¡¡objects¡¡are¡¡regarded¡¡merely¡¡as¡¡self¡enclosed¡¡totalities£»¡¡they¡¡cannot¡¡act¡¡on¡¡one¡¡another¡£¡¡In¡¡this
determination¡¡they¡¡are¡¡the¡¡same¡¡thing¡¡as¡¡the¡¡monads£»¡¡which¡¡for¡¡this¡¡very¡¡reason¡¡were¡¡thought¡¡of
as¡¡exercising¡¡no¡¡influence¡¡whatever¡¡on¡¡one¡¡another¡£¡¡But¡¡the¡¡concept¡¡of¡¡a¡¡monad¡¡is£»¡¡just¡¡for¡¡this
reason£»¡¡a¡¡defective¡¡reflection¡£¡¡For¡¡first¡¡it¡¡is¡¡a¡¡determinate¡¡conception¡¡of¡¡the¡¡monad's¡¡merely
implicit¡¡totality£»¡¡as¡¡a¡¡certain¡¡degree¡¡of¡¡the¡¡development¡¡and¡¡positedness¡¡of¡¡its¡¡representation¡¡of
the¡¡world£»¡¡it¡¡is¡¡determinate£»¡¡now¡¡while¡¡it¡¡is¡¡a¡¡self¡enclosed¡¡totality£»¡¡it¡¡is¡¡also¡¡indifferent¡¡to¡¡this
determinateness£»¡¡therefore¡¡the¡¡determinateness¡¡is¡¡not¡¡its¡¡own£»¡¡but¡¡one¡¡that¡¡is¡¡posited¡¡by¡¡another
object¡£¡¡Secondly¡¡it¡¡is¡¡an¡¡immediate¡¡in¡¡general£»¡¡in¡¡so¡¡far¡¡as¡¡it¡¡is¡¡supposed¡¡to¡¡be¡¡merely¡¡a
mirroring¡¡entity£»¡¡its¡¡relation¡¡to¡¡itself¡¡is¡¡therefore¡¡abstract¡¡universality£»¡¡hence¡¡it¡¡is¡¡a¡¡determinate
being¡¡open¡¡to¡¡others¡£¡¡To¡¡gain¡¡the¡¡freedom¡¡of¡¡substance¡¡it¡¡is¡¡not¡¡sufficient¡¡to¡¡represent¡¡it¡¡as¡¡a
totality¡¡that¡¡is¡¡complete¡¡within¡¡itself¡¡and¡¡has¡¡nothing¡¡to¡¡receive¡¡from¡¡without¡£¡¡On¡¡the¡¡contrary£»
the¡¡mechanical¡¡£§begrifflose£§£»¡¡merely¡¡mirrored¡¡relation¡¡to¡¡itself¡¡is¡¡precisely¡¡a¡¡passivity¡¡towards
another¡£¡¡Similarly¡¡determinateness£»¡¡whether¡¡taken¡¡as¡¡the¡¡determinateness¡¡of¡¡something¡¡that¡¡is¡¡or
of¡¡a¡¡mirroring¡¡entity£»¡¡that¡¡is¡¡a¡¡degree¡¡of¡¡the¡¡monad's¡¡own¡¡spontaneous¡¡development£»¡¡is¡¡something
external£»¡¡the¡¡degree¡¡that¡¡the¡¡development¡¡reaches¡¡has¡¡its¡¡limit¡¡in¡¡an¡¡other¡£¡¡To¡¡shift¡¡the¡¡reciprocity
of¡¡substances¡¡on¡¡to¡¡a¡¡predetermined¡¡harmony¡¡means¡¡nothing¡¡more¡¡than¡¡to¡¡convert¡¡it¡¡into¡¡a
presupposition£»¡¡that¡¡is£»¡¡to¡¡withdraw¡¡it¡¡from¡¡the¡¡Notion¡£¡¡The¡¡need¡¡to¡¡avoid¡¡the¡¡interaction¡¡of
substances¡¡was¡¡based¡¡on¡¡the¡¡moment¡¡of¡¡absolute¡¡self¡subsistence¡¡and¡¡originality¡¡which¡¡was
made¡¡a¡¡fundamental¡¡assumption¡£¡¡But¡¡since¡¡the¡¡positedness£»¡¡the¡¡degree¡¡of¡¡development£»¡¡does¡¡not
correspond¡¡to¡¡this¡¡in¡itself£»¡¡it¡¡has¡¡for¡¡that¡¡very¡¡reason¡¡its¡¡ground¡¡in¡¡an¡¡other¡£
When¡¡treating¡¡of¡¡the¡¡relationship¡¡of¡¡substantiality£»¡¡we¡¡showed¡¡that¡¡it¡¡passes¡¡over¡¡into¡¡the¡¡causal
relationship¡£¡¡But¡¡here¡¡what¡¡is£»¡¡no