±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > science of logic >

µÚ43ÕÂ

science of logic-µÚ43ÕÂ

С˵£º science of logic ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



of¡¡the¡¡judgment¡¡to¡¡the¡¡Notion¡£

As¡¡regards¡¡the¡¡further¡¡determination¡¡of¡¡the¡¡subject¡¡and¡¡predicate£»¡¡we¡¡have¡¡remarked¡¡that¡¡it¡¡is
really¡¡in¡¡the¡¡judgment¡¡first¡¡that¡¡they¡¡have¡¡to¡¡receive¡¡their¡¡determination¡£¡¡Since¡¡the¡¡judgment¡¡is¡¡the
posited¡¡determinateness¡¡of¡¡the¡¡Notion£»¡¡this¡¡determinateness¡¡possesses¡¡the¡¡said¡¡differences
immediately¡¡and¡¡abstractly¡¡as¡¡individuality¡¡and¡¡universality¡£¡¡But¡¡in¡¡so¡¡far¡¡as¡¡the¡¡judgment¡¡is¡¡in
general¡¡the¡¡determinate¡¡being¡¡or¡¡otherness¡¡of¡¡the¡¡Notion¡¡which¡¡has¡¡not¡¡yet¡¡restored¡¡itself¡¡to¡¡the
unity¡¡whereby¡¡it¡¡is¡¡as¡¡Notion£»¡¡there¡¡emerges¡¡also¡­the¡¡determinateness¡¡which¡¡is¡¡notionless£»¡¡the
opposition¡¡of¡¡being¡¡and¡¡reflection¡¡or¡¡the¡¡in¡­itself¡£¡¡But¡¡since¡¡the¡¡Notion¡¡constitutes¡¡the¡¡essential
ground¡¡of¡¡the¡¡judgment£»¡¡these¡¡determinations¡¡are¡¡at¡¡least¡¡indifferent¡¡to¡¡the¡¡extent¡¡that¡¡when¡¡one
belongs¡¡to¡¡the¡¡subject¡¡and¡¡the¡¡other¡¡to¡¡the¡¡predicate£»¡¡the¡¡converse¡¡relationship¡¡equally¡¡holds¡¡good¡£
The¡¡subject¡¡as¡¡the¡¡individual¡¡appears£»¡¡in¡¡the¡¡first¡¡instance£»¡¡as¡¡that¡¡which¡¡simply¡¡is¡¡or¡¡is¡¡for¡¡itself
in¡¡accordance¡¡with¡¡the¡¡specific¡¡determinateness¡¡of¡¡the¡¡individual¡­as¡¡an¡¡actual¡¡object£»¡¡even¡¡though
it¡¡be¡¡only¡¡an¡¡object¡¡in¡¡representational¡¡thought¡­as¡¡for¡¡example¡¡bravery£»¡¡right£»¡¡agreement£»¡¡etc¡£¡­on
which¡¡judgment¡¡is¡¡being¡¡made¡£¡¡The¡¡predicate£»¡¡on¡¡the¡¡other¡¡hand£»¡¡as¡¡the¡¡universal£»¡¡appears¡¡as
this¡¡reflection¡¡on¡¡the¡¡object£»¡¡or¡¡rather¡¡as¡¡the¡¡object's¡¡reflection¡¡into¡¡itself£»¡¡which¡¡goes¡¡beyond¡¡that
immediacy¡¡and¡¡sublates¡¡the¡¡determinatenesses¡¡in¡¡their¡¡form¡¡of¡¡mere¡¡being£»¡¡that¡¡is£»¡¡it¡¡is¡¡the¡¡object's
in¡­itself¡£¡¡In¡¡this¡¡way£»¡¡one¡¡starts¡¡from¡¡the¡¡individual¡¡as¡¡the¡¡first£»¡¡the¡¡immediate£»¡¡and¡¡it¡¡is¡¡raised¡¡by
the¡¡judgment¡¡into¡¡universality£»¡¡just¡¡as£»¡¡conversely£»¡¡the¡¡universal¡¡that¡¡is¡¡only¡¡in¡¡itself¡¡descends¡¡in
the¡¡individual¡¡into¡¡determinate¡¡being¡¡or¡¡becomes¡¡a¡¡being¡¡that¡¡is¡¡for¡¡itself¡£

This¡¡signification¡¡of¡¡the¡¡judgment¡¡is¡¡to¡¡be¡¡taken¡¡as¡¡its¡¡objective¡¡meaning£»¡¡and¡¡at¡¡the¡¡same¡¡time¡¡as
the¡¡truth¡¡of¡¡the¡¡earlier¡¡forms¡¡of¡¡the¡¡transition¡£¡¡In¡¡the¡¡sphere¡¡of¡¡being£»¡¡the¡¡object¡¡becomes¡¡and
others¡¡itself£»¡¡the¡¡finite¡¡perishes¡¡or¡¡goes¡¡under¡¡in¡¡the¡¡infinite£»¡¡in¡¡the¡¡sphere¡¡of¡¡Existence£»¡¡the¡¡object
issues¡¡from¡¡its¡¡ground¡¡into¡¡Appearance¡¡and¡¡falls¡¡to¡¡the¡¡ground£»¡¡the¡¡accident¡¡manifests¡¡the
wealth¡¡of¡¡substance¡¡as¡¡well¡¡as¡¡its¡¡power£»¡¡in¡¡being£»¡¡there¡¡is¡¡transition¡¡into¡¡an¡¡other£»¡¡in¡¡essence£»
reflected¡¡being¡¡in¡¡an¡¡other¡¡by¡¡which¡¡the¡¡necessary¡¡relation¡¡is¡¡revealed¡£¡¡This¡¡movement¡¡of
transition¡¡and¡¡reflection¡¡has¡¡now¡¡passed¡¡over¡¡into¡¡the¡¡original¡¡partition¡¡of¡¡the¡¡Notion¡¡which£»
while¡¡bringing¡¡back¡¡the¡¡individual¡¡to¡¡the¡¡in¡­itself¡¡of¡¡its¡¡universality£»¡¡equally¡¡determines¡¡the¡¡universal
as¡¡something¡¡actual¡¡These¡¡two¡¡acts¡¡are¡¡one¡¡and¡¡the¡¡same¡¡process¡¡in¡¡which¡¡individuality¡¡is¡¡posited
in¡¡its¡¡reflection¡­into¡­self£»¡¡and¡¡the¡¡universal¡¡as¡¡determinate¡£

But¡¡now¡¡this¡¡objective¡¡signification¡¡equally¡¡implies¡¡that¡¡the¡¡said¡¡differences£»¡¡in¡¡reappearing¡¡in¡¡the
determinateness¡¡of¡¡the¡¡Notion£»¡¡are¡¡at¡¡the¡¡same¡¡time¡¡posited¡¡only¡¡as¡¡Appearances£»¡¡that¡¡is£»¡¡that
they¡¡are¡¡not¡¡anything¡¡fixed£»¡¡but¡¡apply¡¡just¡¡as¡¡much¡¡to¡¡the¡¡one¡¡Notion¡¡determination¡¡as¡¡to¡¡the¡¡other¡£
The¡¡subject¡¡is£»¡¡therefore£»¡¡just¡¡as¡¡much¡¡to¡¡be¡¡taken¡¡as¡¡the¡¡in¡­itself£»¡¡and¡¡the¡¡predicate£»¡¡on¡¡the¡¡other
hand£»¡¡as¡¡determinate¡¡being¡£¡¡The¡¡subject¡¡without¡¡predicate¡¡is¡¡what¡¡the¡¡thing¡¡without¡¡qualities£»
the¡¡thing¡­in¡­itself¡¡is¡¡in¡¡the¡¡sphere¡¡of¡¡Appearance¡¡¡¡an¡¡empty£»¡¡indeterminate¡¡ground£»¡¡as¡¡such£»¡¡it¡¡is
the¡¡Notion¡¡enclosed¡¡within¡¡itself£»¡¡which¡¡only¡¡receives¡¡a¡¡differentiation¡¡and¡¡determinateness¡¡in¡¡the
predicate£»¡¡the¡¡predicate¡¡therefore¡¡constitutes¡¡the¡¡side¡¡of¡¡the¡¡determinate¡¡being¡¡of¡¡the¡¡subject¡£
Through¡¡this¡¡determinate¡¡universality¡¡the¡¡subject¡¡stands¡¡in¡¡relation¡¡to¡¡an¡¡externality£»¡¡is¡¡open¡¡to¡¡the
influence¡¡of¡¡other¡¡things¡¡and¡¡thereby¡¡becomes¡¡actively¡¡opposed¡¡to¡¡them¡£¡¡What¡¡is¡¡there¡¡comes
forth¡¡from¡¡its¡¡being¡­within¡­self¡¡and¡¡enters¡¡into¡¡the¡¡universal¡¡element¡¡of¡¡connection¡¡and
relationship£»¡¡into¡¡the¡¡negative¡¡connections¡¡and¡¡the¡¡interplay¡¡of¡¡actuality£»¡¡which¡¡is¡¡a¡¡continuation¡¡of
the¡¡individual¡¡into¡¡other¡¡individuals¡¡and¡¡therefore¡¡universality¡£

The¡¡identity¡¡just¡¡demonstrated£»¡¡namely£»¡¡that¡¡the¡¡determination¡¡of¡¡the¡¡subject¡¡equally¡¡applies¡¡to¡¡the
predicate¡¡and¡¡vice¡¡versa£»¡¡is¡¡not£»¡¡however£»¡¡something¡¡only¡¡for¡¡us£»¡¡it¡¡is¡¡not¡¡merely¡¡in¡¡itself£»¡¡but¡¡is
also¡¡posited¡¡in¡¡the¡¡judgment£»¡¡for¡¡the¡¡judgment¡¡is¡¡the¡¡connection¡¡of¡¡the¡¡two£»¡¡the¡¡copula¡¡expresses
that¡¡the¡¡subject¡¡is¡¡the¡¡predicate¡£¡¡The¡¡subject¡¡is¡¡the¡¡specific¡¡determinateness£»¡¡and¡¡the¡¡predicate¡¡is
this¡¡posited¡¡determinateness¡¡of¡¡the¡¡subject£»¡¡the¡¡subject¡¡is¡¡determined¡¡only¡¡in¡¡its¡¡predicate£»¡¡or£»¡¡only
in¡¡the¡¡predicate¡¡is¡¡it¡¡a¡¡subject£»¡¡in¡¡the¡¡predicate¡¡it¡¡has¡¡returned¡¡into¡¡itself¡¡and¡¡is¡¡therein¡¡the¡¡universal¡£
Now¡¡in¡¡so¡¡far¡¡as¡¡the¡¡subject¡¡is¡¡the¡¡self¡­subsistent£»¡¡this¡¡identity¡¡has¡¡the¡¡relationship¡¡that¡¡the
predicate¡¡does¡¡not¡¡possess¡¡a¡¡self¡­subsistence¡¡of¡¡its¡¡own£»¡¡but¡¡has¡¡its¡¡subsistence¡¡only¡¡in¡¡the
subject£»¡¡it¡¡inheres¡¡in¡¡the¡¡subject¡£¡¡Since¡¡the¡¡predicate¡¡is¡¡thus¡¡distinct¡¡from¡¡the¡¡subject£»¡¡it¡¡is¡¡only¡¡an
isolated¡¡determinateness¡¡of¡¡the¡¡latter£»¡¡only¡¡one¡¡of¡¡its¡¡properties£»¡¡while¡¡the¡¡subject¡¡itself¡¡is¡¡the
concrete£»¡¡the¡¡totality¡¡of¡¡manifold¡¡determinatenesses£»¡¡just¡¡as¡¡the¡¡predicate¡¡contains¡¡one£»¡¡it¡¡is¡¡the
universal¡£

But¡¡on¡­the¡¡other¡¡hand¡¡the¡¡predicate£»¡¡too£»¡¡is¡¡a¡¡self¡­subsistent¡¡universality¡¡and¡¡the¡¡subject£»
conversely£»¡¡only¡¡a¡¡determination¡¡of¡¡it¡£¡¡Looked¡¡at¡¡this¡¡way£»¡¡the¡¡predicate¡¡subsumes¡¡the¡¡subject£»
individuality¡¡and¡¡particularity¡¡are¡¡not¡¡for¡¡themselves£»¡¡but¡¡have¡¡their¡¡essence¡¡and¡¡substance¡¡in¡¡the
universal¡£¡¡The¡¡predicate¡¡expresses¡¡the¡¡subject¡¡in¡¡its¡¡Notion£»¡¡the¡¡individual¡¡and¡¡the¡¡particular¡¡are
contingent¡¡determinations¡¡in¡¡the¡¡subject£»¡¡it¡¡is¡¡their¡¡absolute¡¡possibility¡£¡¡When¡¡in¡¡the¡¡case¡¡of
subsumption¡¡one¡¡thinks¡¡of¡¡an¡¡external¡¡connection¡¡of¡¡subject¡¡and¡¡predicate¡¡and¡¡the¡¡subject¡¡is
conceived¡¡of¡¡as¡¡a¡¡self¡­subsistent¡¡something£»¡¡the¡¡subsumption¡¡refers¡¡to¡¡the¡¡subjective¡¡act¡¡of
judgment¡¡above¡­mentioned¡¡in¡¡which¡¡one¡¡starts¡¡from¡¡the¡¡self¡­subsistence¡¡of¡¡both¡¡subject¡¡and
predicate¡£¡¡From¡¡this¡¡standpoint¡¡subsumption¡¡is¡¡only¡¡the¡¡application¡¡of¡¡the¡¡universal¡¡to¡¡a¡¡particular
or¡¡an¡¡individual£»¡¡which¡¡is¡¡placed¡¡under¡¡the¡¡universal¡¡in¡¡accordance¡¡with¡¡a¡¡vague¡¡idea¡¡that¡¡it¡¡is¡¡of
inferior¡¡quality¡£

When¡¡the¡¡identity¡¡of¡¡subject¡¡and¡¡predicate¡¡are¡¡so¡¡taken¡¡that¡¡at¡¡one¡¡time¡¡one¡¡Notion
determination¡¡applies¡¡to¡¡the¡¡former¡¡and¡¡the¡¡other¡¡to¡¡the¡¡latter£»¡¡and¡¡at¡¡another¡¡time¡¡the¡¡converse
equally¡¡holds¡¡good£»¡¡then¡¡the¡¡identity¡¡is¡¡as¡¡yet¡¡still¡¡only¡¡an¡¡implicit¡¡one£»¡¡on¡¡account¡¡of¡¡the
self¡­subsistent¡¡diversity¡¡of¡¡the¡¡two¡¡sides¡¡of¡¡the¡¡judgment£»¡¡their¡¡posited¡¡unity¡¡also¡¡has¡¡these¡¡two
sides£»¡¡in¡¡the¡¡first¡¡instance¡¡as¡¡different¡£¡¡But¡¡differenceless¡¡identity¡¡really¡¡constitutes¡¡the¡¡true¡¡relation
of¡¡the¡¡subject¡¡to¡¡the¡¡predicate¡£¡¡The¡¡Notion¡¡determination¡¡is¡¡itself¡¡essentially¡¡relation¡¡for¡¡it¡¡is¡¡a
universal£»¡¡therefore¡¡the¡¡same¡¡determinations¡¡possessed¡¡by¡¡the¡¡subject¡¡and¡¡predicate¡¡are¡¡also
possessed¡¡by¡¡their¡¡relation¡¡itself¡£¡¡The¡¡relation¡¡is¡¡universal£»¡¡for¡¡it¡¡is¡¡the¡¡positive¡¡identity¡¡of¡¡the¡¡two£»
of¡¡subject¡¡and¡¡predicate£»¡¡but¡¡it¡¡is¡¡also¡¡determinate£»¡¡for¡¡the¡¡determinateness¡¡of¡¡the¡¡predicate¡¡is¡¡that
of¡¡the¡¡subject£»¡¡further£»¡¡it¡¡is¡¡also¡¡individual£»¡¡for¡¡in¡¡it¡¡the¡¡self¡­subsistent¡¡extremes¡¡are¡¡sublated¡¡as¡¡in
their¡¡negative¡¡unity¡£¡¡However£»¡¡in¡¡the¡¡judgment¡¡this¡¡identity¡¡is¡¡not¡¡as¡¡yet¡¡posited£»¡¡the¡¡copula¡¡is
present¡¡as¡¡the¡¡still¡¡indeterminate¡¡relation¡¡of¡¡being¡¡as¡¡such£º¡¡A¡¡is¡¡B£»¡¡for¡¡in¡¡the¡¡judgment£»¡¡the
elf¡­subsistence¡¡of¡¡the¡¡Notion¡¡determinatenesses¡¡or¡¡the¡¡extremes£»¡¡is¡¡the¡¡reality¡¡which¡¡the¡¡Notion
has¡¡within¡¡it¡£¡¡If¡¡the¡¡is¡¡of¡¡the¡¡copula¡¡were¡¡already¡¡posited¡¡as¡¡the¡¡above¡¡determinate¡¡and¡¡pregnant
unity¡¡of¡¡subject¡¡and¡¡predicate£»¡¡as¡¡their¡¡Notion£»¡¡it¡¡would¡¡already¡¡be¡¡the¡¡syllogism¡£

To¡¡restore¡¡this¡¡identity¡¡of¡¡the¡¡Notion£»¡¡or¡¡rather¡¡to¡¡posit¡¡it£»¡¡is¡¡the¡¡goal¡¡of¡¡the¡¡movement¡¡of¡¡the
judgment¡£¡¡What¡¡is¡¡already¡¡present¡¡in¡¡the¡¡judgment¡¡is£»¡¡on¡¡the¡¡one¡¡hand£»¡¡the¡¡self¡­subsistence¡¡of
subject¡¡and¡¡predicate£»¡¡but¡¡also¡¡their¡¡mutually¡¡opposed¡¡determinateness£»¡¡and¡¡on¡¡the¡¡other¡¡hand
their¡¡none¡¡the¡¡less¡¡abstract¡¡relation¡£¡¡What¡¡the¡¡judgment¡¡enunciates¡¡to¡¡start¡¡with¡¡is¡¡that¡¡the¡¡subject
is¡¡the¡¡predicate£»¡¡but¡¡since¡¡the¡¡predicate¡¡is¡¡supposed¡¡not¡¡to¡¡be¡¡what¡¡the¡¡subject¡¡is£»¡¡we¡¡are¡¡faced
with¡¡a¡¡contradiction¡¡which¡¡must¡¡resolve¡¡itself£»¡¡pass¡¡over¡¡into¡¡a¡¡result¡£¡¡Or¡¡rather£»¡¡since¡¡subject
and¡¡predicate¡¡are¡¡in¡¡and¡¡for¡¡themselves¡¡the¡¡totality¡¡of¡¡the¡¡N

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ