±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > science of logic >

µÚ41ÕÂ

science of logic-µÚ41ÕÂ

С˵£º science of logic ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



alone¡¡they¡¡acquire¡¡the¡¡capability¡¡to¡¡dissolve¡¡themselves¡¡and¡¡pass¡¡over¡¡into¡¡their¡¡opposite¡£¡¡The
highest¡¡maturity£»¡¡the¡¡highest¡¡stage£»¡¡which¡¡anything¡¡can¡¡attain¡¡is¡¡that¡¡in¡¡which¡¡its¡¡downfall¡¡begins¡£
The¡¡fixity¡¡of¡¡the¡¡determinateness¡¡into¡¡which¡¡the¡¡understanding¡¡seems¡¡to¡¡run£»¡¡the¡¡form¡¡of¡¡the
imperishable£»¡¡is¡¡that¡¡of¡¡self¡­relating¡¡universality¡£¡¡But¡¡this¡¡belongs¡¡properly¡¡to¡¡the¡¡Notion£»¡¡and
consequently¡¡in¡¡this¡¡universality¡¡is¡¡to¡¡be¡¡found¡¡expressed£»¡¡and¡¡infinitely¡¡close¡¡at¡¡hand£»¡¡the
dissolution¡¡of¡¡the¡¡finite¡£¡¡This¡¡Universality¡¡directly¡¡refutes¡¡the¡¡determinateness¡¡of¡¡the¡¡finite¡¡and
expresses¡¡its¡¡incongruity¡¡with¡¡the¡¡universality¡£¡¡Or¡¡rather£»¡¡the¡¡adequacy¡¡of¡¡the¡¡finite¡¡is¡¡already¡¡to
hand£»¡¡the¡¡abstract¡¡determinate¡¡is¡¡posited¡¡as¡¡one¡¡with¡¡the¡¡universality£»¡¡and¡¡for¡¡that¡¡very¡¡reason¡¡is
posited¡¡as¡¡not¡¡for¡¡itself¡¡¡ª¡¡for¡¡then¡¡it¡¡would¡¡only¡¡be¡¡a¡¡determinate¡¡¡ª¡¡but¡¡only¡¡as¡¡unity¡¡of¡¡itself¡¡and
the¡¡universal£»¡¡that¡¡is£»¡¡as¡¡Notion¡£¡¡



C¡¡The¡¡Individual¡¡

1¡£¡¡In¡¡the¡¡first¡¡instance£»¡¡therefore£»¡¡individuality¡¡appears¡¡as¡¡the¡¡reflection¡¡of¡¡the¡¡Notion¡¡out¡¡of¡¡its
determinateness¡¡into¡¡itself¡£¡¡It¡¡is¡¡the¡¡self¡­mediation¡¡of¡¡the¡¡Notion¡¡in¡¡so¡¡far¡¡as¡¡its¡¡otherness¡¡has
made¡¡itself¡¡into¡¡an¡¡other¡¡again£»¡¡whereby¡¡the¡¡Notion¡¡has¡¡reinstated¡¡itself¡¡as¡¡self¡­identical£»¡¡but¡¡in¡¡the
determination¡¡of¡¡absolute¡¡negativity¡£¡¡The¡¡negative¡¡in¡¡the¡¡universal¡¡whereby¡¡this¡¡is¡¡a¡¡particular£»
was¡¡defined¡¡above¡¡as¡¡a¡¡two¡­fold¡¡illusory¡¡being£º¡¡in¡¡so¡¡far¡¡as¡¡the¡¡negative¡¡is¡¡an¡¡illusory¡¡being¡¡within
the¡¡universal£»¡¡the¡¡particular¡¡remains¡¡a¡¡universal£»¡¡through¡¡the¡¡reference¡¡of¡¡the¡¡illusory¡¡being
outwards¡¡it¡¡is¡¡a¡¡determinate£»¡¡the¡¡return¡¡of¡¡this¡¡side¡¡into¡¡the¡¡universal¡¡is¡¡two¡­fold£º¡¡either¡¡through
abstraction¡¡which¡¡lets¡¡drop¡¡the¡¡particular¡¡and¡¡rises¡¡to¡¡the¡¡higher¡¡and¡¡the¡¡highest¡¡genus£»¡¡or¡¡else
through¡¡the¡¡individuality¡¡to¡¡which¡¡the¡¡universal¡¡in¡¡the¡¡determinateness¡¡itself¡¡descends¡£¡¡Here¡¡is
where¡¡the¡¡false¡¡path¡¡branches¡¡off¡¡and¡¡abstraction¡¡strays¡¡from¡¡the¡¡highway¡¡of¡¡the¡¡Notion¡¡and
forsakes¡¡the¡¡truth¡£¡¡Its¡¡higher¡¡and¡¡highest¡¡universal¡¡to¡¡which¡¡it¡¡raises¡¡itself¡¡is¡¡only¡¡the¡¡surface£»¡¡which
becomes¡¡ever¡¡more¡¡destitute¡¡of¡¡content£»¡¡the¡¡individuality¡¡it¡¡despises¡¡is¡¡the¡¡profundity¡¡in¡¡which¡¡the
Notion¡¡seizes¡¡itself¡¡and¡¡is¡¡posited¡¡as¡¡Notion¡£¡¡

Universality¡¡and¡¡particularity¡¡appeared£»¡¡on¡¡the¡¡one¡¡hand£»¡¡as¡¡moments¡¡of¡¡the¡¡becoming¡¡of
individuality¡£¡¡But¡¡it¡¡has¡¡already¡¡been¡¡shown¡¡that¡¡they¡¡are¡¡in¡¡themselves¡¡the¡¡total¡¡Notion£»¡¡and
consequently¡¡in¡¡individuality¡¡do¡¡not¡¡pass¡¡over¡¡into¡¡an¡¡other£»¡¡but¡¡that¡¡in¡¡individuality¡¡there¡¡is¡¡only
posited¡¡that¡¡they¡¡are¡¡in¡¡and¡¡for¡¡themselves¡£¡¡The¡¡universal¡¡is¡¡in¡¡and¡¡for¡¡itself¡¡because¡¡it¡¡is¡¡in¡¡its
own¡¡self¡¡absolute¡¡mediation£»¡¡self¡­reference¡¡only¡¡as¡¡absolute¡¡negativity¡£¡¡It¡¡is¡¡an¡¡abstract¡¡universal
in¡¡so¡¡far¡¡as¡¡this¡¡absolute¡¡negativity¡£¡¡It¡¡is¡¡an¡¡abstract¡¡universal¡¡in¡¡so¡¡far¡¡as¡¡this¡¡sublating¡¡is¡¡an
external¡¡act¡¡and¡¡so¡¡a¡¡dropping¡¡of¡¡the¡¡determinateness¡£¡¡

Life£»¡¡Spirit£»¡¡God¡¡¡ª¡¡the¡¡pure¡¡Notion¡¡itself£»¡¡are¡¡beyond¡¡the¡¡grasp¡¡of¡¡abstraction£»¡¡because¡¡it¡¡deprives
its¡¡products¡¡of¡¡singularity£»¡¡of¡¡the¡¡principle¡¡of¡¡individuality¡¡and¡¡personality£»¡¡and¡¡so¡¡arrives¡¡at¡¡nothing
but¡¡universalities¡¡devoid¡¡of¡¡life¡¡and¡¡spirit£»¡¡colour¡¡and¡¡content¡£¡¡

Yet¡¡the¡¡unity¡¡of¡¡the¡¡Notion¡¡is¡¡so¡¡indissoluble¡¡that¡¡even¡¡these¡¡products¡¡of¡¡abstraction£»¡¡though¡¡they
are¡¡supposed¡¡to¡¡drop¡¡individuality¡¡are£»¡¡on¡¡the¡¡contrary£»¡¡individuals¡¡themselves¡£¡¡Abstraction¡¡raises
the¡¡concrete¡¡into¡¡universality¡¡in¡¡which£»¡¡however£»¡¡the¡¡universal¡¡is¡¡grasped¡¡only¡¡as¡¡a¡¡determinate
universality£»¡¡and¡¡this¡¡is¡¡precisely¡¡the¡¡individuality¡¡that¡¡has¡¡shown¡¡itself¡¡to¡¡be¡¡self¡­related
determinateness¡£¡¡Abstraction£»¡¡therefore£»¡¡is¡¡a¡¡sundering¡¡of¡¡the¡¡concrete¡¡and¡¡an¡¡isolating¡¡of¡¡its
determinations£»¡¡through¡¡it¡¡only¡¡single¡¡properties¡¡and¡¡moments¡¡are¡¡seized£»¡¡for¡¡its¡¡product¡¡must
contain¡¡what¡¡it¡¡is¡¡itself¡£¡¡But¡¡the¡¡difference¡¡between¡¡this¡¡individuality¡¡of¡¡its¡¡products¡¡and¡¡the
Notion's¡¡individuality¡¡is¡¡that£»¡¡in¡¡the¡¡former£»¡¡the¡¡individual¡¡as¡¡content¡¡and¡¡the¡¡universal¡¡as¡¡form¡¡are
distinct¡¡from¡¡one¡¡another¡¡¡­¡¡just¡¡because¡¡the¡¡former¡¡is¡¡not¡¡present¡¡as¡¡absolute¡¡form£»¡¡as¡¡the¡¡Notion
itself£»¡¡or¡¡the¡¡latter¡¡is¡¡not¡¡present¡¡as¡¡the¡¡totality¡¡of¡¡form¡£¡¡However¡¡this¡¡more¡¡detailed¡¡consideration
shows¡¡that¡¡the¡¡abstract¡¡product¡¡itself¡¡is¡¡a¡¡unity¡¡of¡¡the¡¡individual¡¡content¡¡and¡¡abstract¡¡universality£»
and¡¡is£»¡¡therefore£»¡¡a¡¡concrete¡¡¡­¡¡and¡¡the¡¡opposite¡¡of¡¡what¡¡it¡¡aims¡¡to¡¡be¡£¡¡

2¡£¡¡But¡¡Individuality¡¡is¡¡not¡¡only¡¡the¡¡return¡¡of¡¡the¡¡Notion¡¡into¡¡itself£»¡¡it¡¡immediately¡¡its¡¡loss¡£¡¡Through
individuality£»¡¡where¡¡the¡¡Notion¡¡is¡¡internal¡¡to¡¡itself£»¡¡it¡¡becomes¡¡external¡¡to¡¡itself¡¡and¡¡enters¡¡into
actuality¡£¡¡Abstraction¡¡which£»¡¡as¡¡the¡¡soul¡¡of¡¡individuality¡¡is¡¡the¡¡relation¡¡of¡¡the¡¡negative¡¡to¡¡the
negative£»¡¡and£»¡¡as¡¡we¡¡have¡¡shown¡¡not¡¡external¡¡to¡¡the¡¡universal¡¡and¡¡the¡¡particular¡¡but¡¡immanent¡¡in
them£»¡¡and¡¡through¡¡it¡¡they¡¡are¡¡concrete£»¡¡content£»¡¡an¡¡individual¡£¡¡But¡¡as¡¡this¡¡negativity£»¡¡individuality¡¡is
the¡¡determinate¡¡determinateness£»¡¡is¡¡differentiation¡¡as¡¡such£»¡¡through¡¡this¡¡reflection¡¡of¡¡the¡¡difference
into¡¡itself£»¡¡the¡¡difference¡¡becomes¡¡fixed£»¡¡it¡¡is¡¡only¡¡through¡¡individuality¡¡that¡¡the¡¡determining¡¡of¡¡the
particular¡¡takes¡¡place£»¡¡for¡¡individuality¡¡is¡¡that¡¡abstraction¡¡which¡¡simply¡¡as¡¡individuality£»¡¡is¡¡now
posited¡¡abstraction¡£¡¡
The¡¡individual£»¡¡therefore£»¡¡as¡¡self¡­related¡¡negativity£»¡¡is¡¡immediate¡¡identity¡¡of¡¡the¡¡negative¡¡with¡¡itself£»
it¡¡is¡¡a¡¡being¡­for¡­self¡£¡¡Or¡¡it¡¡is¡¡the¡¡abstraction¡¡that¡¡determines¡¡the¡¡Notion£»¡¡according¡¡to¡¡its¡¡ideal
moment¡¡of¡¡being£»¡¡as¡¡an¡¡immediate¡£¡¡In¡¡this¡¡way£»¡¡the¡¡individual¡¡is¡¡a¡¡qualitative¡¡one¡¡or¡¡this¡£¡¡With
this¡¡quality¡¡it¡¡is£»¡¡first£»¡¡repulsion¡¡of¡¡itself¡¡from¡¡itself£»¡¡whereby¡¡the¡¡many¡¡other¡¡ones¡¡are¡¡presupposed£»
secondly£»¡¡it¡¡is¡¡now¡¡a¡¡negative¡¡relation¡¡towards¡¡these¡¡presupposed¡¡others£»¡¡and£»¡¡the¡¡individual¡¡is¡¡in
so¡¡far¡¡exclusive¡£¡¡

When¡¡one¡¡understands¡¡by¡¡the¡¡universal£»¡¡that¡¡which¡¡is¡¡common¡¡to¡¡several¡¡individuals£»¡¡one¡¡is
starting¡¡from¡¡the¡¡indifferent¡¡subsistence¡¡of¡¡these¡¡individuals¡¡and¡¡confounding¡¡the¡¡immediacy¡¡of
being¡¡with¡¡the¡¡determination¡¡of¡¡the¡¡Notion¡£¡¡The¡¡lowest¡¡possible¡¡conception¡¡of¡¡the¡¡universal¡¡in¡¡its
connection¡¡with¡¡the¡¡individual¡¡is¡¡this¡¡external¡¡relation¡¡of¡¡it¡¡as¡¡merely¡¡a¡¡common¡¡element¡£¡¡


Chapter¡¡2¡¡The¡¡Judgment

The¡¡judgment¡¡is¡¡the¡¡determinateness¡¡of¡¡the¡¡Notion¡¡posited¡¡in¡¡the¡¡Notion¡¡itself¡£¡¡The¡¡Notion's
determinations£»¡¡or¡¡what¡¡we¡¡have¡¡seen¡¡to¡¡be¡¡the¡¡same¡¡thing£»¡¡the¡¡determinate¡¡Notions£»¡¡have¡¡already
been¡¡considered¡¡on¡¡their¡¡own£»¡¡but¡¡this¡¡consideration¡¡was¡¡more¡¡a¡¡subjective¡¡reflection¡¡or
subjective¡¡abstraction¡£¡¡But¡¡the¡¡Notion¡¡is¡¡itself¡¡this¡¡abstractive¡¡process£»¡¡the¡¡opposing¡¡of¡¡its
determinations¡¡is¡¡its¡¡own¡¡determining¡¡activity¡£¡¡The¡¡judgment¡¡is¡¡this¡¡positing¡¡of¡¡the¡¡determinate
Notions¡¡by¡¡the¡¡Notion¡¡itself¡£¡¡Judging¡¡is¡¡thus¡¡another¡¡function¡¡than¡¡comprehension£»¡¡or¡¡rather¡¡it¡¡is
the¡¡other¡¡function¡¡of¡¡the¡¡Notion¡¡as¡¡the¡¡determining¡¡of¡¡the¡¡Notion¡¡by¡¡itself£»¡¡and¡¡the¡¡further
progress¡¡of¡¡the¡¡judgment¡¡into¡¡the¡¡diversity¡¡of¡¡judgments¡¡is¡¡the¡¡progressive¡¡determination¡¡of¡¡the
Notion¡£¡¡What¡¡kinds¡¡of¡¡determinate¡¡Notions¡¡there¡¡are£»¡¡and¡¡how¡¡these¡¡determinations¡¡of¡¡the
Notion¡¡are¡¡arrived¡¡at£»¡¡has¡¡to¡¡reveal¡¡itself¡¡in¡¡the¡¡judgment¡£

The¡¡judgment¡¡can¡¡therefore¡¡be¡¡called¡¡the¡¡proximate¡¡realisation¡¡of¡¡the¡¡Notion£»¡¡inasmuch¡¡as¡¡reality
denotes¡¡in¡¡general¡¡entry¡¡into¡¡existence¡¡as¡¡a¡¡determinate¡¡being¡£¡¡More¡¡precisely£»¡¡the¡¡nature¡¡of¡¡this
realisation¡¡has¡¡presented¡¡itself¡¡in¡¡such¡¡a¡¡manner¡¡that£»¡¡on¡¡the¡¡one¡¡hand£»¡¡the¡¡moments¡¡of¡¡the¡¡Notion
through¡¡its¡¡reflection¡­into¡­self¡¡or¡¡its¡¡individuality¡¡are¡¡self¡­subsistent¡¡totalities£»¡¡while¡¡on¡¡the¡¡other
hand¡¡the¡¡unity¡¡of¡¡the¡¡Notion¡¡is¡¡their¡¡relation¡£¡¡The¡¡determinations¡¡reflected¡¡into¡¡themselves¡¡are
determinate¡¡totalities£»¡¡no¡¡less¡¡essentially¡¡in¡¡their¡¡indifferent¡¡and¡¡disconnected¡¡subsistence¡¡as
through¡¡their¡¡reciprocal¡¡mediation¡¡with¡¡one¡¡another¡£¡¡The¡¡determining¡¡itself¡¡is¡¡only¡¡totality¡¡in¡¡that¡¡it
contains¡¡these¡¡totalities¡¡and¡¡their¡¡connection¡£¡¡This¡¡totality¡¡is¡¡the¡¡judgment¡£¡¡It¡¡contains£»¡¡therefore£»
first£»¡¡the¡¡two¡¡self¡­subsistents¡¡which¡¡are¡¡called¡¡subject¡¡and¡¡predicate¡£¡¡What¡¡each¡¡is¡¡cannot¡¡yet
really¡¡be¡¡said£»¡¡they¡¡are¡¡still¡¡indeterminate£»¡¡for¡¡it¡¡is¡¡only¡¡through¡¡the¡¡judgment¡¡that¡¡they¡¡are¡¡to¡¡be
determined¡£¡¡The¡¡judgment£»¡¡being¡¡the¡¡Notion¡¡as¡¡determinate£»¡¡the¡¡only¡¡distinction¡¡present¡¡is¡¡the
general¡¡one¡¡that¡¡the¡¡judgment¡¡contains¡¡the¡¡determinate¡¡Notion¡¡over¡¡against¡¡the¡¡still
indeterminate¡¡Notion¡£¡¡The¡¡subject¡¡can¡¡therefore£»¡¡in¡¡the¡¡first¡¡

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ