science of logic-µÚ27ÕÂ
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
But¡¡negation¡¡directed¡¡against¡¡the¡¡negative¡¡is¡¡purely¡¡self¡related¡¡negativity£»¡¡the¡¡absolute¡¡sublating¡¡of
the¡¡determinateness¡¡itself¡£
The¡¡determinateness£»¡¡therefore£»¡¡which¡¡illusory¡¡being¡¡is¡¡in¡¡essence¡¡is¡¡infinite¡¡determinateness£»¡¡it¡¡is
the¡¡purely¡¡self¡coincident¡¡negative£»¡¡it¡¡is¡¡thus¡¡the¡¡determinateness¡¡which¡¡as¡¡such¡¡is¡¡self¡subsistent
and¡¡indeterminate¡£¡¡Conversely£»¡¡the¡¡self¡subsistent£»¡¡as¡¡self¡related¡¡immediacy£»¡¡is¡¡equally¡¡sheer
determinateness¡¡and¡¡moment¡¡and¡¡is¡¡only¡¡as¡¡self¡related¡¡negativity¡£¡¡This¡¡negativity¡¡that¡¡is¡¡identical
with¡¡immediacy¡¡and¡¡immediacy¡¡that¡¡is¡¡thus¡¡identical¡¡with¡¡negativity£»¡¡is¡¡essence¡£¡¡Illusory¡¡being£»
therefore£»¡¡is¡¡essence¡¡itself£»¡¡but¡¡essence¡¡in¡¡a¡¡determinateness£»¡¡in¡¡such¡¡a¡¡manner£»¡¡however£»¡¡that¡¡this
is¡¡only¡¡a¡¡moment¡¡of¡¡essence¡¡and¡¡essence¡¡is¡¡the¡¡reflection¡¡of¡¡itself¡¡within¡¡itself¡£
In¡¡the¡¡sphere¡¡of¡¡being£»¡¡there¡¡arises¡¡over¡¡against¡¡being¡¡as¡¡an¡¡immediacy£»¡¡non¡being£»¡¡which¡¡is
likewise¡¡an¡¡immediacy£»¡¡and¡¡their¡¡truth¡¡is¡¡becoming¡£¡¡In¡¡the¡¡sphere¡¡of¡¡essence£»¡¡we¡¡have¡¡first
essence¡¡opposed¡¡to¡¡the¡¡unessential£»¡¡then¡¡essence¡¡opposed¡¡to¡¡illusory¡¡being£»¡¡that¡¡is£»¡¡to¡¡the
unessential¡¡and¡¡to¡¡illusory¡¡bel¡¡rig¡¡as¡¡the¡¡remainder¡¡of¡¡being¡£¡¡But¡¡both¡¡essence¡¡and¡¡illusory¡¡being£»
and¡¡also¡¡the¡¡difference¡¡of¡¡essence¡¡from¡¡them£»¡¡derive¡¡solely¡¡from¡¡the¡¡fact¡¡that¡¡essence¡¡is¡¡at¡¡first
taken¡¡as¡¡an¡¡immediate£»¡¡not¡¡as¡¡it¡¡is¡¡in¡¡itself£»¡¡namely£»¡¡not¡¡as¡¡an¡¡immediacy¡¡that¡¡is¡¡as¡¡pure¡¡mediation
or¡¡absolute¡¡negativity¡£¡¡The¡¡first¡¡immediacy¡¡is¡¡thus¡¡only¡¡the¡¡determinateness¡¡of¡¡immediacy¡£¡¡The
sublating¡¡of¡¡this¡¡determinateness¡¡of¡¡essence£»¡¡therefore£»¡¡consists¡¡simply¡¡and¡¡solely¡¡in¡¡showing¡¡that
the¡¡unessential¡¡is¡¡only¡¡illusory¡¡being¡¡and¡¡that¡¡the¡¡truth¡¡is¡¡rather¡¡that¡¡essence¡¡contains¡¡the¡¡illusory
being¡¡within¡¡itself¡¡as¡¡the¡¡infinite¡¡immanent¡¡movement¡¡that¡¡determines¡¡its¡¡immediacy¡¡as¡¡negativity
and¡¡its¡¡negativity¡¡as¡¡immediacy£»¡¡and¡¡is¡¡thus¡¡the¡¡reflection¡¡of¡¡itself¡¡within¡¡itself¡£¡¡Essence¡¡in¡¡this¡¡its
self¡movement¡¡is¡¡reflection
C¡¡REFLECTION
¡¡¡¡¡¡¡¡¡¡£¨a£©¡¡Positing¡¡Reflection
¡¡¡¡¡¡¡¡¡¡£¨b£©¡¡External¡¡Reflection
¡¡¡¡¡¡¡¡¡¡£¨c£©¡¡Determining¡¡Reflection
Chapter¡¡2¡¡The¡¡Essentialities¡¡or¡¡Determinations¡¡of¡¡Reflection
Reflection¡¡is¡¡determinate¡¡reflection£»¡¡hence¡¡essence¡¡is¡¡determinate¡¡essence£»¡¡or¡¡it¡¡is¡¡an¡¡essentiality¡£
Reflection¡¡is¡¡the¡¡showing¡¡of¡¡the¡¡illusory¡¡being¡¡of¡¡essence¡¡within¡¡essence¡¡itself¡£¡¡Essence£»¡¡as
infinite¡¡return¡into¡self£»¡¡is¡¡not¡¡immediate¡¡but¡¡negative¡¡simplicity£»¡¡it¡¡is¡¡a¡¡movement¡¡through¡¡distinct
moments£»¡¡absolute¡¡self¡mediation¡£¡¡But¡¡it¡¡reflects¡¡itself¡¡into¡¡these¡¡its¡¡moments¡¡which¡¡consequently
are¡¡themselves¡¡determinations¡¡reflected¡¡into¡¡themselves¡£
Essence¡¡is¡¡at¡¡first£»¡¡simple¡¡self¡relation£»¡¡pure¡¡identity¡£¡¡This¡¡is¡¡its¡¡determination£»¡¡but¡¡as¡¡such¡¡it¡¡is
rather¡¡the¡¡absence¡¡of¡¡any¡¡determination¡£
Secondly£»¡¡the¡¡proper¡¡determination¡¡is¡¡difference£»¡¡a¡¡difference¡¡that¡¡is£»¡¡on¡¡the¡¡one¡¡hand£»¡¡external¡¡or
indifferent£»¡¡diversity¡¡in¡¡general£»¡¡and¡¡on¡¡the¡¡other¡¡hand£»¡¡is¡¡opposed¡¡diversity¡¡or¡¡opposition¡£¡¡
Thirdly£»¡¡as¡¡contradiction£»¡¡the¡¡opposition¡¡is¡¡reflected¡¡into¡¡itself¡¡and¡¡withdrawn¡¡into¡¡its¡¡ground¡£
Remark£º¡¡The¡¡Categories¡¡of¡¡Reflection¡¡
A¡¡IDENTITY
B¡¡DIFFERENCE
¡¡¡¡¡¡¡¡¡¡£¨a£©¡¡Absolute¡¡Difference
¡¡¡¡¡¡¡¡¡¡£¨b£©¡¡Diversity
Remark£º¡¡The¡¡Law¡¡of¡¡Diversity
Diversity£»¡¡like¡¡identity£»¡¡is¡¡expressed¡¡in¡¡its¡¡own¡¡law¡£¡¡And¡¡both¡¡these¡¡laws¡¡are¡¡held¡¡apart¡¡as
indifferently¡¡different£»¡¡so¡¡that¡¡each¡¡is¡¡valid¡¡on¡¡its¡¡own¡¡without¡¡respect¡¡to¡¡the¡¡other¡£
All¡¡things¡¡are¡¡different£»¡¡or£º¡¡there¡¡are¡¡no¡¡two¡¡things¡¡like¡¡each¡¡other¡£¡¡This¡¡proposition¡¡is£»¡¡in¡¡fact£»
opposed¡¡to¡¡the¡¡law¡¡of¡¡identity£»¡¡for¡¡it¡¡declares£º¡¡A¡¡is¡¡distinctive£»¡¡therefore¡¡A¡¡is¡¡also¡¡not¡¡A£»¡¡or£º¡¡A¡¡is
unlike¡¡something¡¡else£»¡¡so¡¡that¡¡it¡¡is¡¡not¡¡simply¡¡A¡¡but¡¡rather¡¡a¡¡specific¡¡A¡£¡¡A's¡¡place¡¡in¡¡the¡¡law¡¡of
identity¡¡can¡¡be¡¡taken¡¡by¡¡any¡¡other¡¡substrate£»¡¡but¡¡A¡¡as¡¡distinctive¡¡£§als¡¡Ungleiches£§¡¡can¡¡no¡¡longer
be¡¡exchanged¡¡with¡¡any¡¡other¡£¡¡True£»¡¡it¡¡is¡¡supposed¡¡to¡¡be¡¡distinctive£»¡¡not¡¡from¡¡itself£»¡¡but¡¡only¡¡from
another£»¡¡but¡¡this¡¡distinctiveness¡¡is¡¡its¡¡own¡¡determination¡£¡¡As¡¡self¡identical¡¡A£»¡¡it¡¡is¡¡indeterminate£»
but¡¡as¡¡determinate¡¡it¡¡is¡¡the¡¡opposite¡¡of¡¡this£»¡¡it¡¡no¡¡longer¡¡has¡¡only¡¡self¡identity£»¡¡but¡¡also¡¡a¡¡negation
and¡¡therefore¡¡a¡¡difference¡¡of¡¡itself¡¡from¡¡itself¡¡within¡¡it¡£
That¡¡everything¡¡is¡¡different¡¡from¡¡everything¡¡else¡¡is¡¡a¡¡very¡¡superfluous¡¡proposition£»¡¡for¡¡things¡¡in¡¡the
plural¡¡immediately¡¡involve¡¡manyness¡¡and¡¡wholly¡¡indeterminate¡¡diversity¡£¡¡But¡¡the¡¡proposition¡¡that
no¡¡two¡¡things¡¡are¡¡completely¡¡like¡¡each¡¡other£»¡¡expresses¡¡more£»¡¡namely£»¡¡determinate¡¡difference¡£
Two¡¡things¡¡are¡¡not¡¡merely¡¡two¡¡¡ª¡¡numerical¡¡manyness¡¡is¡¡only¡¡one¡and¡the¡sameness¡¡¡ª¡¡but¡¡they
are¡¡different¡¡through¡¡a¡¡determination¡£¡¡Ordinary¡¡thinking¡¡is¡¡struck¡¡by¡¡the¡¡proposition¡¡that¡¡no¡¡two
things¡¡are¡¡like¡¡each¡¡other¡¡¡ª¡¡as¡¡in¡¡the¡¡story¡¡of¡¡how¡¡Leibniz¡¡propounded¡¡it¡¡at¡¡court¡¡and¡¡caused¡¡the
ladies¡¡to¡¡look¡¡at¡¡the¡¡leaves¡¡of¡¡trees¡¡to¡¡see¡¡whether¡¡they¡¡could¡¡find¡¡two¡¡alike¡£¡¡Happy¡¡times¡¡for
metaphysics¡¡when¡¡it¡¡was¡¡the¡¡occupation¡¡of¡¡courtiers¡¡and¡¡the¡¡testing¡¡of¡¡its¡¡propositions¡¡called¡¡for
no¡¡more¡¡exertion¡¡than¡¡to¡¡compare¡¡leaves£¡¡¡The¡¡reason¡¡why¡¡this¡¡proposition¡¡is¡¡striking¡¡lies¡¡in¡¡what
has¡¡been¡¡said£»¡¡that¡¡two£»¡¡or¡¡numerical¡¡manyness£»¡¡does¡¡not¡¡contain¡¡any¡¡determinate¡¡difference¡¡and
that¡¡diversity¡¡as¡¡such£»¡¡in¡¡its¡¡abstraction£»¡¡is¡¡at¡¡first¡¡indifferent¡¡to¡¡likeness¡¡and¡¡unlikeness¡£¡¡Ordinary
thinking£»¡¡even¡¡when¡¡it¡¡goes¡¡on¡¡to¡¡a¡¡determination¡¡of¡¡diversity£»¡¡takes¡¡these¡¡moments¡¡themselves¡¡to
be¡¡mutually¡¡indifferent£»¡¡so¡¡that¡¡one¡¡without¡¡the¡¡other£»¡¡the¡¡mere¡¡likeness¡¡of¡¡things¡¡without
unlikeness£»¡¡suffices¡¡to¡¡determine¡¡whether¡¡the¡¡things¡¡are¡¡different¡¡even¡¡when¡¡they¡¡are¡¡only¡¡a
numerical¡¡many£»¡¡not¡¡unlike£»¡¡but¡¡simply¡¡different¡¡without¡¡further¡¡qualification¡£¡¡The¡¡law¡¡of¡¡diversity£»
on¡¡the¡¡other¡¡hand£»¡¡asserts¡¡that¡¡things¡¡are¡¡different¡¡from¡¡one¡¡another¡¡through¡¡unlikeness£»¡¡that¡¡the
determination¡¡of¡¡unlikeness¡¡belongs¡¡to¡¡them¡¡just¡¡as¡¡much¡¡as¡¡that¡¡of¡¡likeness£»¡¡for¡¡determinate
difference¡¡is¡¡constituted¡¡only¡¡by¡¡both¡¡together¡£
Now¡¡this¡¡proposition¡¡that¡¡unlikeness¡¡must¡¡be¡¡predicated¡¡of¡¡all¡¡things£»¡¡surely¡¡stands¡¡in¡¡need¡¡of
proof£»¡¡it¡¡cannot¡¡be¡¡set¡¡up¡¡as¡¡an¡¡immediate¡¡proposition£»¡¡for¡¡even¡¡in¡¡the¡¡ordinary¡¡mode¡¡of¡¡cognition
a¡¡proof¡¡is¡¡demanded¡¡of¡¡the¡¡combination¡¡of¡¡different¡¡determinations¡¡in¡¡a¡¡synthetic¡¡proposition£»¡¡or
else¡¡the¡¡indication¡¡of¡¡a¡¡third¡¡term¡¡in¡¡which¡¡they¡¡are¡¡mediated¡£¡¡This¡¡proof¡¡would¡¡have¡¡to¡¡exhibit¡¡the
passage¡¡of¡¡identity¡¡into¡¡difference£»¡¡and¡¡then¡¡the¡¡passage¡¡of¡¡this¡¡into¡¡determinate¡¡difference£»¡¡into
unlikeness¡£¡¡But¡¡as¡¡a¡¡rule¡¡this¡¡is¡¡not¡¡done¡£¡¡We¡¡have¡¡found¡¡that¡¡diversity¡¡or¡¡external¡¡difference¡¡is£»¡¡in
truth£»¡¡reflected¡¡into¡¡itself£»¡¡is¡¡difference¡¡in¡¡its¡¡own¡¡self£»¡¡that¡¡the¡¡indifferent¡¡subsistence¡¡of¡¡the¡¡diverse
is¡¡a¡¡mere¡¡positedness¡¡and¡¡therefore¡¡not¡¡an¡¡external£»¡¡indifferent¡¡difference£»¡¡but¡¡a¡¡single¡¡relation¡¡of
the¡¡two¡¡moments¡£
This¡¡involves¡¡the¡¡dissolution¡¡and¡¡nullity¡¡of¡¡the¡¡law¡¡of¡¡diversity¡£¡¡Two¡¡things¡¡are¡¡not¡¡perfectly¡¡alike£»
so¡¡they¡¡are¡¡at¡¡once¡¡alike¡¡and¡¡unlike£»¡¡alike£»£»simply¡¡because¡¡they¡¡are¡¡things£»¡¡or¡¡just¡¡two£»¡¡without
further¡¡qualification¡for¡¡each¡¡is¡¡a¡¡thing¡¡and¡¡a¡¡one£»¡¡no¡¡less¡¡than¡¡the¡¡other¡but¡¡they¡¡are¡¡unlike¡¡ex
hypothesi¡£¡¡We¡¡are¡¡therefore¡¡presented¡¡with¡¡this¡¡determination£»¡¡that¡¡both¡¡moments£»¡¡likeness¡¡and
unlikeness£»¡¡are¡¡different¡¡in¡¡one¡¡and¡¡the¡¡same¡¡thing£»¡¡or¡¡that¡¡the¡¡difference£»¡¡while¡¡falling¡¡asunder£»¡¡is¡¡at
the¡¡same¡¡time¡¡one¡¡and¡¡the¡¡same¡¡relation¡£¡¡This¡¡has¡¡therefore¡¡passed¡¡over¡¡Into¡¡opposition¡£
The¡¡togetherness¡¡of¡¡both¡¡predicates¡¡is¡¡held¡¡asunder¡¡by¡¡the¡¡'in¡¡so¡¡far'£»¡¡namely£»¡¡when¡¡it¡¡is¡¡said¡¡that
two¡¡things¡¡are¡¡alike¡¡in¡¡so¡¡far¡¡as¡¡they¡¡are¡¡not¡¡unlike£»¡¡or¡¡on¡¡the¡¡one¡¡side¡¡or¡¡in¡¡one¡¡respect¡¡are¡¡alike£»
but¡¡on¡¡another¡¡side¡¡or¡¡in¡¡another¡¡respect¡¡are¡¡unalike¡£¡¡The¡¡effect¡¡of¡¡this¡¡is¡¡to¡¡remove¡¡the¡¡unity¡¡of
likeness¡¡and¡¡unlikeness¡¡from¡¡the¡¡thing£»¡¡and¡¡to¡¡adhere¡¡to¡¡what¡¡would¡¡be¡¡the¡¡thing's¡¡own¡¡reflection
and¡¡the¡¡merely¡¡implicit¡¡reflection¡¡of¡¡likeness¡¡and¡¡unlikeness£»¡¡as¡¡a¡¡reflection¡¡external¡¡to¡¡the¡¡thing¡£
But¡¡it¡¡is¡¡this¡¡reflection¡¡that£»¡¡in¡¡one¡¡and¡¡the¡¡same¡¡activity£»¡¡distinguishes¡¡the¡¡two¡¡sides¡¡of¡¡likeness
and¡¡unlikeness£»¡¡hence¡¡contains¡¡both¡¡in¡¡one¡¡activity£»¡¡lets¡¡the¡¡one¡¡show£»¡¡be¡¡reflected£»¡¡in¡¡the¡¡other¡£
But¡¡the¡¡usual¡¡tenderness¡¡for¡¡things£»¡¡whose¡¡only¡¡care¡¡is¡¡that¡¡they¡¡do¡¡not¡¡contradict¡¡themselves£»
forgets¡¡here¡¡as¡¡elsewhere¡¡that¡¡in¡¡this¡¡way¡¡the¡¡contradiction¡¡is¡¡not¡¡resolved¡¡but¡¡merely¡¡shifted
elsewhere£»¡¡into¡¡subjective¡¡or¡¡external¡¡reflection¡¡generally£»¡¡and¡¡this