±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > science of logic >

µÚ22ÕÂ

science of logic-µÚ22ÕÂ

С˵£º science of logic ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



reflected¡£¡¡Measure£»¡¡'¡¡having¡¡thus¡¡realised¡¡its¡¡own¡¡Notion£»¡¡has¡¡passed¡¡into¡¡essence¡£

At¡¡first£»¡¡measure¡¡is¡¡only¡¡an¡¡immediate¡¡unity¡¡of¡¡quality¡¡and¡¡quantity£»¡¡so¡¡that£º¡¡£¨1£©£»¡¡we¡¡have¡¡a
quantum¡¡with¡¡a¡¡qualitative¡¡significance£»¡¡a¡¡measure¡£¡¡The¡¡progressive¡¡determining¡¡of¡¡this¡¡consists¡¡in
explicating¡¡what¡¡is¡¡only¡¡implicit¡¡in¡¡it£»¡¡namely£»¡¡the¡¡difference¡¡of¡¡its¡¡moments£»¡¡of¡¡its¡¡qualitatively¡¡and
quantitatively¡¡determined¡¡being¡£¡¡These¡¡moments¡¡further¡¡develop¡¡themselves¡¡into¡¡wholes¡¡of
measure¡¡which¡¡as¡¡such¡¡are¡¡self¡­subsistent¡£¡¡These¡¡are¡¡essentially¡¡in¡¡relationship¡¡with¡¡each¡¡other£»
and¡¡so¡¡measure¡¡becomes¡¡£¨2£©£»¡¡a¡¡ratio¡¡of¡¡specific¡¡quanta¡¡having¡¡the¡¡form¡¡of¡¡self¡­subsistent
measures¡£¡¡But¡¡their¡¡self¡­subsistence¡¡also¡¡rests¡¡essentially¡¡on¡¡quantitative¡¡relation¡¡and¡¡quantitative
difference£»¡¡and¡¡so¡¡their¡¡self¡­subsistence¡¡becomes¡¡a¡¡transition¡¡of¡¡each¡¡into¡¡the¡¡other£»¡¡with¡¡the¡¡result
that¡¡measure¡¡perishes¡¡in¡¡the¡¡measureless¡£¡¡But¡¡this¡¡beyond¡¡of¡¡measure¡¡is¡¡the¡¡negativity¡¡of¡¡measure
only¡¡in¡¡principle£»¡¡this¡¡results¡¡£¨3£©£»¡¡in¡¡the¡¡positing¡¡of¡¡the¡¡indifference¡¡of¡¡the¡¡determinations¡¡of
measure£»¡¡and¡¡the¡¡positing¡¡of¡¡real¡¡measure¡¡¡­¡¡real¡¡through¡¡the¡¡negativity¡¡contained¡¡in¡¡the¡¡indifference
¡­¡¡as¡¡an¡¡inverse¡¡ratio¡¡of¡¡measures¡¡which£»¡¡as¡¡self¡­subsistent¡¡qualities£»¡¡are¡¡essentially¡¡based¡¡only¡¡on
their¡¡quantity¡¡and¡¡on¡¡their¡¡negative¡¡relation¡¡to¡¡one¡¡another£»¡¡thereby¡¡demonstrating¡¡themselves¡¡to¡¡be
only¡¡moments¡¡of¡¡their¡¡truly¡¡self¡­subsistent¡¡unity¡¡which¡¡is¡¡their¡¡reflection¡­into¡­self¡¡and¡¡the¡¡positing
thereof£»¡¡essence¡£

The¡¡development¡¡of¡¡measure¡¡which¡¡has¡¡been¡¡attempted¡¡in¡¡the¡¡following¡¡chapters¡¡is¡¡extremely
difficult¡£¡¡Starting¡¡from¡¡immediate£»¡¡external¡¡measure¡¡it¡¡should£»¡¡on¡¡the¡¡one¡¡hand£»¡¡go¡¡on¡¡to¡¡develop
the¡¡abstract¡¡determination¡¡of¡¡the¡¡quantitative¡¡aspects¡¡of¡¡natural¡¡objects¡¡£¨a¡¡mathematics¡¡of
nature£©£»¡¡and¡¡on¡¡the¡¡other¡¡hand£»¡¡to¡¡indicate¡¡the¡¡connection¡¡between¡¡this¡¡determination¡¡of¡¡measure
and¡¡the¡¡qualities¡¡of¡¡natural¡¡objects£»¡¡at¡¡least¡¡in¡¡general£»¡¡for¡¡the¡¡specific¡¡proof£»¡¡derived¡¡from¡¡the
Notion¡¡of¡¡the¡¡concrete¡¡object£»¡¡of¡¡the¡¡connection¡¡between¡¡its¡¡qualitative¡¡and¡¡quantitative¡¡aspects£»
belongs¡¡to¡¡the¡¡special¡¡science¡¡of¡¡the¡¡concrete¡£¡¡Examples¡¡of¡¡this¡¡kind¡¡concerning¡¡the¡¡law¡¡of¡¡falling
bodies¡¡and¡¡free£»¡¡celestial¡¡motion¡¡will¡¡be¡¡found¡¡in¡¡the¡¡Encyclopedia¡£¡¡of¡¡the¡¡Phil¡£¡¡Sciences£»¡¡3rd
ed¡££»¡¡Sections¡¡267¡¡and¡¡270£»¡¡Remark¡£¡¡In¡¡this¡¡connection¡¡the¡¡general¡¡observation¡¡may¡¡be¡¡made¡¡that
the¡¡different¡¡forms¡¡in¡¡which¡¡measure¡¡is¡¡realised¡¡belong¡¡also¡¡to¡¡different¡¡spheres¡¡of¡¡natural¡¡reality¡£
The¡¡complete£»¡¡abstract¡¡indifference¡¡of¡¡developed¡¡measure£»¡¡i¡£e¡£¡¡the¡¡laws¡¡of¡¡measure£»¡¡can¡¡only¡¡be
manifested¡¡in¡¡the¡¡sphere¡¡of¡¡mechanics¡¡in¡¡which¡¡the¡¡concrete¡¡bodily¡¡factor¡¡is¡¡itself¡¡only¡¡abstract
matter£»¡¡the¡¡qualitative¡¡differences¡¡of¡¡such¡¡matter¡¡are¡¡essentially¡¡quantitatively¡¡determined£»¡¡space
and¡¡time¡¡are¡¡the¡¡purest¡¡forms¡¡of¡¡externality£»¡¡and¡¡the¡¡multitude¡¡of¡¡matters£»¡¡masses£»¡¡intensity¡¡of
weight£»¡¡are¡¡similarly¡¡external¡¡determinations¡¡which¡¡have¡¡their¡¡characteristic¡¡determinateness¡¡in¡¡the
quantitative¡¡element¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡such¡¡quantitative¡¡determinateness¡¡of¡¡abstract¡¡matter¡¡is
deranged¡¡simply¡¡by¡¡the¡¡plurality¡¡of¡¡conflicting¡¡qualities¡¡in¡¡the¡¡inorganic¡¡sphere¡¡a¡¡rid¡¡still¡¡more¡¡even
in¡¡the¡¡organic¡¡world¡£¡¡But¡¡here¡¡there¡¡is¡¡involved¡¡not¡¡merely¡¡a¡¡conflict¡¡of¡¡qualities£»¡¡for¡¡measure¡¡here
is¡¡subordinated¡¡to¡¡higher¡¡relationships¡¡and¡¡the¡¡immanent¡¡development¡¡of¡¡measure¡¡tends¡¡to¡¡be
reduced¡¡to¡¡the¡¡simple¡¡form¡¡of¡¡immediate¡¡measure¡£¡¡The¡¡limbs¡¡of¡¡the¡¡animal¡¡organism¡¡have¡¡a
measure¡¡which£»¡¡as¡¡a¡¡simple¡¡quantum£»¡¡stands¡¡in¡¡a¡¡ratio¡¡to¡¡the¡¡other¡¡quanta¡¡of¡¡the¡¡other¡¡limbs£»¡¡the
proportions¡¡of¡¡the¡¡human¡¡body¡¡are¡¡the¡¡fixed¡¡ratio¡¡of¡¡such¡¡quanta¡£¡¡Natural¡¡science¡¡is¡¡stil1¡¡far¡¡from
possessing¡¡an¡¡insight¡¡into¡¡the¡¡connection¡¡between¡¡such¡¡quantities¡¡and¡¡the¡¡organic¡¡functions¡¡on
which¡¡they¡¡wholly¡¡depend¡£¡¡But¡¡the¡¡readiest¡¡example¡¡of¡¡the¡¡reduction¡¡of¡¡an¡¡immanent¡¡measure¡¡to¡¡a
merely¡¡externally¡¡determined¡¡magnitude¡¡is¡¡motion¡£¡¡In¡¡the¡¡celestial¡¡bodies¡¡it¡¡is¡¡free¡¡motion£»¡¡a
motion¡¡which¡¡is¡¡determined¡¡solely¡¡by¡¡the¡¡Notion¡¡and¡¡whose¡¡quantitative¡¡elements¡¡therefore¡¡equally
depend¡¡solely¡¡on¡¡the¡¡Notion¡¡£¨see¡¡above£©£»¡¡but¡¡such¡¡free¡¡motion¡¡is¡¡reduced¡¡by¡¡the¡¡living¡¡creature¡¡to
arbitrary¡¡or¡¡mechanically¡¡regular£»¡¡i¡£e¡£¡¡a¡¡wholly¡¡abstract£»¡¡formal¡¡motion¡£

And¡¡in¡¡the¡¡realm¡¡of¡¡spirit¡¡there¡¡is¡¡still¡¡less¡¡to¡¡be¡¡found¡¡a¡¡characteristic£»¡¡free¡¡development¡¡of
measure¡£¡¡It¡¡is¡¡quite¡¡evident£»¡¡for¡¡example£»¡¡that¡¡a¡¡republican¡¡constitution¡¡like¡¡that¡¡of¡¡Athens£»¡¡or¡¡an
aristocratic¡¡constitution¡¡tempered¡¡by¡¡democracy£»¡¡is¡¡suitable¡¡only¡¡for¡¡States¡¡of¡¡a¡¡certain¡¡size£»¡¡and
that¡¡in¡¡a¡¡developed¡¡civil¡¡society¡¡the¡¡numbers¡¡of¡¡individuals¡¡belonging¡¡to¡¡different¡¡occupations¡¡stand
in¡¡a¡¡certain¡¡relations¡¡to¡¡one¡¡another£»¡¡but¡¡all¡¡this¡¡yields¡¡neither¡¡laws¡¡of¡¡measure¡¡nor¡¡characteristic
forms¡¡of¡¡it¡£¡¡In¡¡the¡¡spiritual¡¡sphere¡¡as¡¡such¡¡there¡¡occur¡¡differences¡¡of¡¡intensity¡¡of¡¡character£»
strength¡¡of¡¡imagination£»¡¡sensations£»¡¡general¡¡ideas£»¡¡and¡¡so¡¡on£»¡¡but¡¡the¡¡determination¡¡does¡¡not¡¡go
beyond¡¡the¡¡indefiniteness¡¡of¡¡strength¡¡or¡¡weakness¡£¡¡How¡¡insipid¡¡and¡¡completely¡¡empty¡¡the
so¡­called¡¡laws¡¡turn¡¡out¡¡to¡¡be¡¡which¡¡have¡¡been¡¡laid¡¡down¡¡about¡¡the¡¡relation¡¡of¡¡strength¡¡and
weakness¡¡of¡¡sensations£»¡¡general¡¡ideas£»¡¡and¡¡so¡¡on£»¡¡comes¡¡home¡¡to¡¡one¡¡on¡¡reading¡¡the¡¡psychologies
which¡¡occupy¡¡themselves¡¡with¡¡such¡¡laws¡£

Chapter¡¡1£º¡¡Specific¡¡Quantity

A¡¡The¡¡Specific¡¡Quantum

B¡¡Specifying¡¡Measure

¡¡¡¡¡¡¡¡¡¡£¨a£©¡¡The¡¡Rule

¡¡¡¡¡¡¡¡¡¡£¨b£©¡¡Specifying¡¡Measure

¡¡¡¡¡¡¡¡¡¡£¨c£©¡¡Relation¡¡of¡¡the¡¡Two¡¡Sides¡¡as¡¡Qualities

Remark

The¡¡exposition¡¡here¡¡of¡¡the¡¡connection¡¡between¡¡the¡¡qualitative¡¡nature¡¡of¡¡something¡¡and¡¡its
quantitative¡¡determination¡¡has¡¡its¡¡application¡¡in¡¡the¡¡already¡¡indicated¡¡example¡¡of¡¡motion¡£¡¡First¡¡of
all£»¡¡in¡¡velocity¡¡as¡¡the¡¡direct¡¡ratio¡¡of¡¡space¡¡traversed¡¡and¡¡time¡¡elapsed£»¡¡the¡¡magnitude¡¡of¡¡time¡¡is
taken¡¡as¡¡denominator¡¡while¡¡that¡¡of¡¡space¡¡is¡¡taken¡¡as¡¡numerator¡£¡¡If¡¡velocity¡¡as¡¡such¡¡is¡¡only¡¡a¡¡ratio
of¡¡the¡¡space¡¡and¡¡time¡¡in¡¡a¡¡motion£»¡¡it¡¡is¡¡immaterial¡¡which¡¡of¡¡the¡¡two¡¡moments¡¡is¡¡to¡¡be¡¡considered¡¡as
amount¡¡or¡¡as¡¡unit¡£¡¡Space£»¡¡however£»¡¡like¡¡weight¡¡in¡¡specific¡¡gravity£»¡¡is¡¡an¡¡external£»¡¡real¡¡whole¡¡as
such¡¡¡­¡¡hence¡¡amount¡¡¡­¡¡whereas¡¡time£»¡¡like¡¡volume£»¡¡is¡¡the¡¡ideal£»¡¡negative¡¡factor£»¡¡the¡¡side¡¡of¡¡unity¡£
But¡¡here¡¡there¡¡essentially¡¡belongs¡¡the¡¡more¡¡important¡¡ratio£»¡¡that¡¡which¡¡holds¡¡between¡¡the
magnitudes¡¡of¡¡space¡¡and¡¡time¡¡in¡¡free¡¡motion£»¡¡at¡¡first£»¡¡in¡¡the¡¡still¡¡conditioned¡¡motion¡¡of¡¡a¡¡falling
body¡¡where¡¡the¡¡time¡¡factor¡¡is¡¡determined¡¡as¡¡a¡¡root¡¡and¡¡the¡¡space¡¡factor¡¡as¡¡a¡¡square£»¡¡or¡¡in¡¡the
absolutely¡¡free¡¡motion¡¡of¡¡the¡¡celestial¡¡bodies¡¡where¡¡the¡¡period¡¡of¡¡revolution¡¡is¡¡lower¡¡by¡¡one¡¡power
than¡¡the¡¡distance¡¡from¡¡the¡¡sun£»¡¡the¡¡former¡¡being¡¡a¡¡square¡¡and¡¡the¡¡latter¡¡a¡¡cube¡£¡¡Fundamental
relationships¡¡of¡¡this¡¡kind¡¡rest¡¡on¡¡the¡¡nature¡¡of¡¡the¡¡interrelated¡¡qualities¡¡of¡¡space¡¡and¡¡time¡¡and¡¡on¡¡the
kind¡¡of¡¡relation¡¡in¡¡which¡¡they¡¡stand£»¡¡either¡¡as¡¡a¡¡mechanical¡¡motion£»¡¡i¡£e¡£¡¡as¡¡an¡¡unfree¡¡motion¡¡which
is¡¡not¡¡determined¡¡by¡¡the¡¡Notion¡¡of¡¡the¡¡moments¡¡of¡¡space¡¡and¡¡time£»¡¡or¡¡as¡¡the¡¡descent¡¡of¡¡a¡¡falling
body£»¡¡i¡£e¡£¡¡as¡¡a¡¡conditionally¡¡free¡¡motion£»¡¡or¡¡as¡¡the¡¡absolutely¡¡free¡¡celestial¡¡motion¡£¡¡These¡¡kinds¡¡of
motion£»¡¡no¡¡less¡¡than¡¡their¡¡laws£»¡¡rest¡¡on¡¡the¡¡development¡¡of¡¡the¡¡Notion¡¡of¡¡their¡¡moments£»¡¡of¡¡space
and¡¡time£»¡¡since¡¡these¡¡qualities¡¡as¡¡such¡¡£¨space¡¡and¡¡time£©¡¡prove¡¡to¡¡be¡¡in¡¡themselves£»¡¡i¡£e¡£¡¡in¡¡their
Notion£»¡¡inseparable¡¡and¡¡their¡¡quantitative¡¡relationship¡¡is¡¡the¡¡being¡­for¡­self¡¡of¡¡measure£»¡¡is¡¡only¡¡one
measure¡­determination¡£

In¡¡regard¡¡to¡¡the¡¡absolute¡¡relations¡¡of¡¡measure£»¡¡it¡¡is¡¡well¡¡to¡¡bear¡¡in¡¡mind¡¡that¡¡the¡¡mathematics¡¡of
nature£»¡¡if¡¡it¡¡is¡¡to¡¡be¡¡worthy¡¡of¡¡the¡¡name¡¡of¡¡science£»¡¡must¡¡be¡¡essentially¡¡the¡¡science¡¡of¡¡measures¡¡¡­¡¡a
science¡¡for¡¡which¡¡it¡¡is¡¡true¡¡much¡¡has¡¡been¡¡done¡¡empirically£»¡¡but¡¡little¡¡as¡¡yet¡¡from¡¡a¡¡strictly¡¡scientific£»
that¡¡is£»¡¡philosophical¡¡point¡¡of¡¡view¡£¡¡Mathematical¡¡principles¡¡of¡¡natural¡¡philosophy¡­as¡¡Newton
called¡¡his¡¡work¡­if¡¡they¡¡are¡¡to¡¡fulfil¡¡this¡¡description¡¡in¡¡a¡¡profounder¡¡sense¡¡than¡¡that¡¡accorded¡¡to
them¡¡by¡¡Newton¡¡and¡¡by¡¡the¡¡entire¡¡Baconian¡¡species¡¡of¡¡philosophy¡¡and¡¡science£»¡¡must¡¡contain
things¡¡of¡¡quite¡¡a¡¡different¡¡character¡¡in¡¡order¡¡to¡¡bring¡¡light¡¡into¡¡these¡¡still¡¡obscure¡¡regions¡¡which¡¡are£»
however£»¡¡worthy¡¡in¡¡the¡¡highest¡¡degree¡¡of¡¡consideration¡£¡¡

It¡¡is¡¡a¡¡great¡¡service¡¡to¡¡ascertain¡¡the¡¡empirical¡¡numbers¡¡of¡¡nature£»¡¡e¡£g¡££»¡¡the¡¡distances¡¡of¡¡the¡¡planets
from¡¡one¡¡another£»¡¡but¡¡it¡¡is¡¡an¡¡infinitely¡¡greater¡¡service¡¡

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ