±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > science of logic >

µÚ20ÕÂ

science of logic-µÚ20ÕÂ

С˵£º science of logic ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



a¡¡hundred¡£¡¡In¡¡one¡¡sense¡¡this¡¡is¡¡correct£»¡¡but¡¡on¡¡the¡¡other¡¡hand¡¡none¡¡of¡¡the¡¡hundred¡¡ones¡¡has
precedence¡¡over¡¡any¡¡other¡¡for¡¡they¡¡are¡¡only¡¡equal¡¡¡ª¡¡each¡¡is¡¡equally¡¡the¡¡hundredth£»¡¡thus¡¡they¡¡all
belong¡¡to¡¡the¡¡limit¡¡which¡¡makes¡¡the¡¡number¡¡a¡¡hundred¡¡and¡¡the¡¡number¡¡cannot¡¡dispense¡¡with¡¡any¡¡of
them¡¡for¡¡its¡¡determinateness¡£¡¡Hence£»¡¡relatively¡¡to¡¡the¡¡hundredth¡¡one£»¡¡the¡¡others¡¡do¡¡not¡¡constitute¡¡a
determinate¡¡being¡¡that¡¡is¡¡in¡¡any¡¡way¡¡different¡¡from¡¡the¡¡limit£»¡¡whether¡¡they¡¡are¡¡outside¡¡or¡¡inside¡¡it¡£
Consequently£»¡¡the¡¡number¡¡is¡¡not¡¡a¡¡plurality¡¡over¡¡against¡¡the¡¡enclosing£»¡¡limiting¡¡one£»¡¡but¡¡itself
constitutes¡¡this¡¡limitation¡¡which¡¡is¡¡a¡¡specific¡¡quantum£»¡¡the¡¡many¡¡constitute¡¡a¡¡number£»¡¡a¡¡two£»¡¡a¡¡ten£»¡¡a
hundred£»¡¡and¡¡so¡¡on¡£

Now¡¡the¡¡limiting¡¡one¡¡is¡¡the¡¡number¡¡as¡¡determined¡¡relatively¡¡to¡¡other¡¡numbers£»¡¡as¡¡distinguished
from¡¡them¡£¡¡But¡¡this¡¡distinguishing¡¡does¡¡not¡¡become¡¡a¡¡qualitative¡¡determinateness¡¡but¡¡remains
quantitative£»¡¡falling¡¡only¡¡within¡¡the¡¡comparing¡¡external¡¡reflection£»¡¡the¡¡number£»¡¡as¡¡a¡¡one£»¡¡remains
returned¡¡into¡¡itself¡¡and¡¡indifferent¡¡to¡¡others¡£¡¡This¡¡indifference¡¡of¡¡a¡¡number¡¡to¡¡others¡¡is¡¡an¡¡essential
determination¡¡of¡¡it¡¡and¡¡constitutes¡¡the¡¡implicit¡¡determinedness¡¡of¡¡the¡¡number£»¡¡but¡¡also¡¡the¡¡number's
own¡¡externality¡£¡¡Number¡¡is¡¡thus¡¡a¡¡numerical¡¡one¡¡as¡¡the¡¡absolutely¡¡determinate¡¡one£»¡¡which¡¡at¡¡the
same¡¡time¡¡has¡¡the¡¡form¡¡of¡¡simple¡¡immediacy¡¡and¡¡for¡¡which£»¡¡therefore£»¡¡the¡¡relation¡¡to¡¡other¡¡is
completely¡¡external¡£¡¡Further£»¡¡one¡¡as¡¡a¡¡number¡¡possesses¡¡determinateness¡¡£¨in¡¡so¡¡far¡¡as¡¡this¡¡is¡¡a
relation¡¡to¡¡other£©¡¡as¡¡the¡¡moments¡¡of¡¡itself¡¡contained¡¡within¡¡it£»¡¡in¡¡its¡¡difference¡¡of¡¡unit¡¡and¡¡amount£»
and¡¡amount¡¡is¡¡itself¡¡a¡¡plurality¡¡of¡¡ones£»¡¡that¡¡is£»¡¡this¡¡absolute¡¡externality¡¡is¡¡in¡¡the¡¡one¡¡itself¡£¡¡This
contradiction¡¡of¡¡number¡¡or¡¡of¡¡quantum¡¡as¡¡such¡¡within¡¡itself¡¡is¡¡the¡¡quality¡¡of¡¡quantum£»¡¡in¡¡the¡¡further
determinations¡¡of¡¡which¡¡this¡¡contradiction¡¡is¡¡developed¡£

Remark¡¡1£º¡¡The¡¡Species¡¡of¡¡Calculation¡¡in¡¡Arithmetic£»¡¡Kant's¡¡Synthetic¡¡Propositions¡¡a¡¡priori

Remark¡¡2£º¡¡The¡¡Employment¡¡of¡¡Numerical¡¡Distinctions¡¡for¡¡Expressing¡¡Philosophical
Notions

B¡¡Extensive¡¡and¡¡Intensive¡¡Quantum

¡¡¡¡¡¡¡¡¡¡£¨a£©¡¡Their¡¡Difference

¡¡¡¡¡¡¡¡¡¡£¨b£©¡¡Identity¡¡of¡¡Extensive¡¡and¡¡Intensive¡¡Magnitude

Remark¡¡1£º¡¡Examples¡¡of¡¡This¡¡Identity

Remark¡¡2£º¡¡The¡¡determination¡¡of¡¡degree¡¡as¡¡applied¡¡by¡¡Kant¡¡to¡¡the¡¡soul

¡¡¡¡¡¡¡¡¡¡£¨c£©¡¡Alteration¡¡of¡¡Quantum

C¡¡Quantitative¡¡Infinity

¡¡¡¡¡¡¡¡¡¡£¨a£©¡¡Its¡¡Notion

¡¡¡¡¡¡¡¡¡¡£¨b£©¡¡The¡¡Quantitative¡¡Infinite¡¡Progress

Remark¡¡1£º¡¡The¡¡High¡¡Repute¡¡of¡¡the¡¡Progress¡¡to¡¡Infinity

Remark¡¡2£º¡¡The¡¡Kantian¡¡Antinomy¡¡of¡¡the¡¡Limitation¡¡and¡¡Nonlimitation¡¡of¡¡the¡¡World

¡¡¡¡¡¡¡¡¡¡£¨c£©¡¡The¡¡Infinity¡¡of¡¡Quantum

Remark¡¡1£º¡¡The¡¡Specific¡¡Nature¡¡of¡¡the¡¡Notion¡¡of¡¡the¡¡Mathematical¡¡Infinite

Remark¡¡2£º¡¡The¡¡Purpose¡¡of¡¡the¡¡Differential¡¡Calculus¡¡Deduced¡¡from¡¡its¡¡Application

Remark¡¡3£º¡¡Further¡¡Forms¡¡Connected¡¡With¡¡the¡¡Qualitative¡¡Determinateness¡¡of¡¡Magnitude

Chapter¡¡3¡¡The¡¡Quantitative¡¡Relation¡¡or¡¡Quantitative¡¡Ratio

A¡¡The¡¡Direct¡¡Ratio

B¡¡Inverse¡¡Ratio

C¡¡The¡¡Ratio¡¡of¡¡Powers

Remark

In¡¡the¡¡Remarks¡¡above¡¡on¡¡the¡¡quantitative¡¡infinite£»¡¡it¡¡was¡¡shown¡¡that¡¡this¡¡infinite¡¡and¡¡also¡¡the
difficulties¡¡associated¡¡with¡¡it¡¡have¡¡their¡¡origin¡¡in¡¡the¡¡qualitative¡¡moment¡¡which¡¡makes¡¡its
appearance¡¡in¡¡the¡¡sphere¡¡of¡¡quantity£»¡¡and¡¡also¡¡how¡¡the¡¡qualitative¡¡moment¡¡of¡¡the¡¡ratio¡¡of¡¡powers
in¡¡particular¡¡is¡¡the¡¡source¡¡of¡¡various¡¡developments¡¡and¡¡complexities¡£¡¡It¡¡was¡¡shown¡¡that¡¡the¡¡chief
obstacle¡¡to¡¡a¡¡grasp¡¡of¡¡the¡¡Notion¡¡of¡¡this¡¡infinite¡¡is¡¡the¡¡stopping¡¡short¡¡at¡¡its¡¡merely¡¡negative
determination¡¡as¡¡the¡¡negation¡¡of¡¡quantum£»¡¡instead¡¡of¡¡advancing¡¡to¡¡the¡¡simple¡¡affirmative
determination¡¡which¡¡is¡¡the¡¡qualitative¡¡moment¡£¡¡The¡¡only¡¡further¡¡remark¡¡to¡¡be¡¡made¡¡here¡¡concerns
the¡¡intrusion¡¡of¡¡quantitative¡¡forms¡¡into¡¡the¡¡pure¡¡qualitative¡¡forms¡¡of¡¡powers¡¡in¡¡of¡¡thought¡¡in
philosophy¡£¡¡It¡¡is¡¡the¡¡relationship¡¡particular¡¡which¡¡has¡¡been¡¡applied¡¡recently¡¡to¡¡the¡¡determinations¡¡of
the¡¡Notion¡£¡¡The¡¡Notion¡¡in¡¡its¡¡immediacy¡¡was¡¡called¡¡the¡¡first¡¡power¡¡or¡¡potence£»¡¡in¡¡its¡¡otherness
or¡¡difference£»¡¡in¡¡the¡¡determinate¡¡being¡¡of¡¡its¡¡moments£»¡¡the¡¡second¡¡power£»¡¡and¡¡in¡¡its¡¡return¡¡into
itself¡¡or¡¡as¡¡a¡¡totality£»¡¡the¡¡third¡¡power¡£¡¡It¡¡is¡¡at¡¡once¡¡evident¡¡that¡¡power¡¡as¡¡used¡¡thus¡¡is¡¡a¡¡category
which¡¡essentially¡¡belongs¡¡to¡¡quantum¡¡¡­¡¡these¡¡powers¡¡do¡¡not¡¡bear¡¡the¡¡meaning¡¡of¡¡the¡¡potentia£»¡¡the
dynamis¡¡of¡¡Aristotle¡£¡¡Thus£»¡¡the¡¡relationship¡¡of¡¡powers¡¡expresses¡¡determinateness¡¡in¡¡the¡¡form¡¡or
difference¡¡which¡¡has¡¡reached¡¡its¡¡truth£»¡¡but¡¡difference¡¡as¡¡it¡¡is¡¡in¡¡the¡¡particular¡¡Notion¡¡of¡¡quantum£»
not¡¡as¡¡it¡¡is¡¡in¡¡the¡¡Notion¡¡as¡¡such¡£¡¡In¡¡quantum£»¡¡the¡¡negativity¡¡which¡¡belongs¡¡to¡¡the¡¡nature¡¡of¡¡the
Notion¡¡is¡¡still¡¡far¡¡from¡¡being¡¡posited¡¡in¡¡the¡¡determination¡¡proper¡¡to¡¡the¡¡Notion£»¡¡differences¡¡which
are¡¡proper¡¡to¡¡quantum¡¡are¡¡superficial¡¡determinations¡¡for¡¡the¡¡Notion¡¡itself¡¡and¡¡are¡¡still¡¡far¡¡from
being¡¡determined¡¡as¡¡they¡¡are¡¡in¡¡the¡¡Notion¡£¡¡It¡¡was¡¡in¡¡the¡¡infancy¡¡of¡¡philosophic¡¡thinking¡¡that
numbers¡¡were¡¡used£»¡¡as¡¡by¡¡Pythagoras£»¡¡to¡¡designate¡¡universal£»¡¡essential¡¡distinctions¡­and¡¡first¡¡and
second¡¡power£»¡¡and¡¡so¡¡on¡¡are¡¡in¡¡this¡¡respect¡¡not¡¡a¡¡whit¡¡better¡¡than¡¡numbers¡£¡¡This¡¡was¡¡a¡¡preliminary
stage¡¡to¡¡comprehension¡¡in¡¡the¡¡element¡¡of¡¡pure¡¡thought£»¡¡it¡¡was¡¡not¡¡until¡¡after¡¡Pythagoras¡¡that
thought¡¡determinations¡¡themselves¡¡were¡¡discovered£»¡¡i¡£e¡££»¡¡became¡¡on¡¡their¡¡own¡¡account¡¡objects
for¡¡consciousness¡£¡¡But¡¡to¡¡retrogress¡¡from¡¡such¡¡determinations¡¡to¡¡those¡¡of¡¡number¡¡is¡¡the¡¡action¡¡of¡¡a
thinking¡¡which¡¡feels¡¡its¡¡own¡¡incapacity£»¡¡a¡¡thinking¡¡which£»¡¡in¡¡Opposition¡¡to¡¡current¡¡philosophical
culture¡¡which¡¡is¡¡accustomed¡¡to¡¡thought¡¡determinations£»¡¡now¡¡also¡¡makes¡¡itself¡¡ridiculous¡¡by
pretending¡¡that¡¡this¡¡impotence¡¡is¡¡something¡¡new£»¡¡superior£»¡¡and¡¡an¡¡advance¡£

There¡¡is¡¡as¡¡little¡¡to¡¡be¡¡said¡¡against¡¡the¡¡expression¡¡power¡¡when¡¡it¡¡is¡¡used¡¡only¡¡as¡¡a¡¡symbol£»¡¡as¡¡there
is¡¡against¡¡the¡¡use¡¡of¡¡numbers¡¡or¡¡any¡¡other¡¡kind¡¡of¡¡symbols¡¡for¡¡Notions¡­but¡¡also¡¡there¡¡is¡¡just¡¡as
much¡¡to¡¡be¡¡said¡¡against¡¡them¡¡as¡¡against¡¡all¡¡symbolism¡¡whatever¡¡in¡¡which¡¡pure¡¡determinations¡¡of
the¡¡Notion¡¡or¡¡of¡¡philosophy¡¡are¡¡supposed¡¡to¡¡be¡¡represented¡£

Philosophy¡¡needs¡¡no¡¡such¡¡help¡¡either¡¡from¡¡the¡¡world¡¡of¡¡sense¡¡or¡¡from¡¡the¡¡products¡¡of¡¡the
imagination£»¡¡or¡¡from¡¡subordinate¡¡spheres¡¡in¡¡its¡¡own¡¡peculiar¡¡province£»¡¡for¡¡the¡¡determinations¡¡of
such¡¡spheres¡¡are¡¡unfitted¡¡for¡¡higher¡¡spheres¡¡and¡¡for¡¡the¡¡whole¡£¡¡This¡¡unfitness¡¡is¡¡manifest¡¡whenever
categories¡¡of¡¡the¡¡finite¡¡are¡¡applied¡¡to¡¡the¡¡infinite£»¡¡the¡¡current¡¡determinations¡¡of¡¡force£»¡¡or
substantiality£»¡¡cause¡¡and¡¡effect£»¡¡and¡¡so¡¡on£»¡¡are¡¡likewise¡¡only¡¡symbols¡¡for¡¡expressing£»¡¡for¡¡example£»
vital¡¡or¡¡spiritual¡¡relationships£»¡¡i¡£e¡£¡¡they¡¡are¡¡untrue¡¡determinations¡¡for¡¡such¡¡relationships£»¡¡and¡¡still
more¡¡so¡¡are¡¡the¡¡powers¡¡of¡¡quantum¡¡and¡¡degrees¡¡of¡¡powers£»¡¡both¡¡for¡¡such¡¡and¡¡for¡¡speculative
relationships¡¡generally¡£

If¡¡numbers£»¡¡powers£»¡¡the¡¡mathematical¡¡infinite£»¡¡and¡¡suchlike¡¡are¡¡to¡¡be¡¡used¡¡not¡¡as¡¡symbols¡¡but¡¡as
forms¡¡for¡¡philosophical¡¡determinations¡¡and¡¡hence¡¡themselves¡¡as¡¡philosophical¡¡forms£»¡¡then¡¡it¡¡would
be¡¡necessary¡¡first¡¡of¡¡all¡¡to¡¡demonstrate¡¡their¡¡philosophical¡¡meaning£»¡¡i¡£e¡£¡¡the¡¡specific¡¡nature¡¡of¡¡their
Notion¡£¡¡If¡¡this¡¡is¡¡done£»¡¡then¡¡they¡¡themselves¡¡are¡¡superfluous¡¡designations£»¡¡the¡¡determinateness¡¡of
the¡¡Notion¡¡specifies¡¡its¡¡own¡¡self¡¡and¡¡its¡¡specification¡¡alone¡¡is¡¡the¡¡correct¡¡and¡¡fitting¡¡designation¡£
The¡¡use¡¡of¡¡those¡¡forms¡¡is£»¡¡therefore£»¡¡nothing¡¡more¡¡than¡¡a¡¡convenient¡¡means¡¡of¡¡evading¡¡the¡¡task¡¡of
grasping¡¡the¡¡determinations¡¡of¡¡the¡¡Notion£»¡¡of¡¡specifying¡¡and¡¡of¡¡justifying¡¡them¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Section¡¡Three£º¡¡Measure

Abstractly¡¡expressed£»¡¡in¡¡measure¡¡quality¡¡and¡¡quantity¡¡are¡¡united¡£¡¡Being¡¡as¡¡such¡¡is¡¡an¡¡immediate
identity¡¡of¡¡the¡¡determinateness¡¡with¡¡itself¡£¡¡This¡¡immediacy¡¡of¡¡the¡¡determinateness¡¡has¡¡sublated
itself¡£¡¡Quantity¡¡is¡¡being¡¡which¡¡has¡¡returned¡¡into¡¡itself¡¡in¡¡such¡¡a¡¡manner¡¡that¡¡it¡¡is¡¡a¡¡simple
self¡­identity¡¡as¡¡indifference¡¡to¡¡the¡¡determinateness¡£

But¡¡this¡¡indifference¡¡is¡¡only¡¡the¡¡externality¡¡of¡¡having¡¡the¡¡determinateness¡¡not¡¡in¡¡its¡¡own¡¡self¡¡but¡¡in¡¡an
other¡£¡¡Thirdly£»¡¡we¡¡now¡¡have¡¡self¡­related¡¡externality£»¡¡as¡¡self¡­related¡¡it¡¡is¡¡also¡¡a¡¡sublated¡¡externality
and¡¡has¡¡within¡¡itself¡¡the¡¡difference¡¡from¡¡itself¡­the¡¡difference¡¡which£»¡¡as¡¡an¡¡externality¡¡is¡¡the
quantitative£»¡¡and¡¡as¡¡taken¡¡back¡¡into¡¡itself¡¡is¡¡the¡¡qualitative£»¡¡moment¡£

In¡¡transcendental¡¡idealism¡¡the¡¡categories¡¡of¡¡quantity¡¡and¡¡quality¡¡are¡¡followed£»¡¡after¡¡the¡¡insertion¡¡of
relation£»¡¡by¡¡modality£»¡¡which¡¡may¡¡therefore¡¡be¡¡m

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ