±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > science of logic >

µÚ19ÕÂ

science of logic-µÚ19ÕÂ

С˵£º science of logic ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



repulsion¡¡is£»¡¡therefore£»¡¡the¡¡creative¡¡flowing¡¡away¡¡of¡¡itself¡£¡¡On¡¡account¡¡of¡¡the¡¡self¡­sameness¡¡of¡¡what
is¡¡repelled£»¡¡this¡¡distinguishing¡¡or¡¡differentiation¡¡is¡¡an¡¡uninterrupted¡¡continuity£»¡¡and¡¡because¡¡of¡¡the
coming¡­out¡­of¡­itself¡¡this¡¡continuity£»¡¡without¡¡being¡¡interrupted£»¡¡is¡¡at¡¡the¡¡same¡¡time¡¡a¡¡plurality£»¡¡which
no¡¡less¡¡immediately¡¡remains¡¡in¡¡its¡¡self¡­identicalness¡£

Remark¡¡1£º¡¡The¡¡Conception¡¡of¡¡Pure¡¡Quantity

Remark¡¡2£º¡¡The¡¡Kantian¡¡Antinomy¡¡of¡¡the¡¡Indivisibility¡¡and¡¡the¡¡Infinite¡¡Divisibility

B¡¡Continuous¡¡and¡¡Discrete¡¡Magnitude

Remark£º¡¡The¡¡Usual¡¡Separation¡¡of¡¡These¡¡Magnitudes

In¡¡the¡¡usual¡¡ideas¡¡of¡¡continuous¡¡and¡¡discrete¡¡magnitude£»¡¡it¡¡is¡¡overlooked¡¡that¡¡each¡¡of¡¡these
magnitudes¡¡contains¡¡both¡¡moments£»¡¡continuity¡¡and¡¡discreteness£»¡¡and¡¡that¡¡the¡¡distinction¡¡between
them¡¡consists¡¡only¡¡in¡¡this£»¡¡that¡¡in¡¡one¡¡of¡¡the¡¡moments¡¡the¡¡determinateness¡¡is¡¡posited¡¡and¡¡in¡¡the
other¡¡it¡¡is¡¡only¡¡implicit¡£¡¡Space£»¡¡time£»¡¡matter£»¡¡and¡¡so¡¡forth¡¡are¡¡continuous¡¡magnitudes¡¡in¡¡that¡¡they
are¡¡repulsions¡¡from¡¡themselves£»¡¡a¡¡streaming¡¡forth¡¡out¡¡of¡¡themselves¡¡which¡¡at¡¡the¡¡same¡¡time¡¡is¡¡not
their¡¡transition¡¡or¡¡relating¡¡of¡¡themselves¡¡to¡¡a¡¡qualitative¡¡other¡£¡¡They¡¡possess¡¡the¡¡absolute¡¡possibility
that¡¡the¡¡one¡¡may¡¡be¡¡posited¡¡in¡¡them¡¡at¡¡any¡¡point¡­not¡¡the¡¡empty¡¡possibility¡¡of¡¡a¡¡mere¡¡otherness¡¡£¨as
when¡¡it¡¡is¡¡said£»¡¡it¡¡is¡¡possible¡¡that¡¡a¡¡tree¡¡might¡¡stand¡¡in¡¡the¡¡place¡¡of¡¡this¡¡stone£©£»¡¡but¡¡they¡¡contain¡¡the
principle¡¡of¡¡the¡¡one¡¡within¡¡themselves£»¡¡it¡¡is¡¡one¡¡of¡¡the¡¡determinations¡¡which¡¡constitute¡¡them¡£

Conversely£»¡¡in¡¡discrete¡¡magnitude¡¡continuity¡¡is¡¡not¡¡to¡¡be¡¡overlooked£»¡¡this¡¡moment¡¡is£»¡¡as¡¡has¡¡been
shown£»¡¡the¡¡one¡¡as¡¡unity¡£

Continuous¡¡and¡¡discrete¡¡magnitude¡¡can¡¡be¡¡regarded¡¡as¡¡species¡¡of¡¡quantity£»¡¡provided¡¡that
magnitude¡¡is¡¡posited£»¡¡not¡¡under¡¡any¡¡external¡¡determinateness£»¡¡but¡¡under¡¡the¡¡determinatenesses¡¡of
its¡¡own¡¡moments£»¡¡the¡¡ordinary¡¡transition¡¡from¡¡genus¡¡to¡¡species¡¡allows¡¡external¡¡characteristics¡¡to
be¡¡attributed¡¡to¡¡the¡¡former¡¡according¡¡to¡¡some¡¡external¡¡basis¡¡of¡¡classification¡£¡¡And¡¡besides£»
continuous¡¡and¡¡discrete¡¡magnitude¡¡are¡¡not¡¡yet¡¡quanta£»¡¡they¡¡are¡¡only¡¡quantity¡¡itself¡¡in¡¡each¡¡of¡¡its
two¡¡forms¡£¡¡They¡¡are¡¡perhaps£»¡¡called¡¡magnitudes¡¡in¡¡so¡¡far¡¡as¡¡they¡¡have¡¡in¡¡common¡¡with¡¡quantum
simply¡¡this¡­to¡¡be¡¡a¡¡determinateness¡¡in¡¡quantity¡£

C¡£¡¡LIMITATION¡¡OF¡¡QUANTITY

Discrete¡¡magnitude¡¡has¡¡first¡¡the¡¡one¡¡for¡¡its¡¡principle£»¡¡secondly£»¡¡it¡¡is¡¡a¡¡plurality¡¡of¡¡ones£»¡¡and¡¡thirdly£»
it¡¡is¡¡essentially¡¡continuous£»¡¡it¡¡is¡¡the¡¡one¡¡as¡¡at¡¡the¡¡same¡¡time¡¡sublated£»¡¡as¡¡unity£»¡¡the¡¡continuation¡¡of
itself¡¡as¡¡such¡¡in¡¡the¡¡discreteness¡¡of¡¡the¡¡ones¡£¡¡Consequently£»¡¡it¡¡is¡¡posited¡¡as¡¡one¡¡magnitude£»¡¡the
determinateness¡¡of¡¡which¡¡is¡¡the¡¡one¡¡which£»¡¡in¡¡this¡¡posited¡¡and¡¡determinate¡¡being¡¡is¡¡the¡¡excluding
one£»¡¡a¡¡limit¡¡in¡¡the¡¡unity¡£¡¡Discrete¡¡magnitude¡¡as¡¡such¡¡is¡¡immediately¡¡not¡¡limited£»¡¡but¡¡as¡¡distinguished
from¡¡continuous¡¡magnitude¡¡it¡¡is¡¡a¡¡determinate¡¡being£»¡¡a¡¡something£»¡¡with¡¡the¡¡one¡¡as¡¡its
determinateness¡¡and¡¡also¡¡as¡¡its¡¡first¡¡negation¡¡and¡¡limit¡£

This¡¡limit£»¡¡which¡¡is¡¡related¡¡to¡¡the¡¡unity¡¡and¡¡is¡¡the¡¡negation¡¡in¡¡it£»¡¡is¡¡also£»¡¡as¡¡the¡¡one£»¡¡self¡­related£»¡¡it¡¡is
thus¡¡the¡¡enclosing£»¡¡encompassing¡¡limit¡£¡¡Limit¡¡here¡¡is¡¡not¡¡at¡¡first¡¡distinguished¡¡from¡¡its¡¡determinate
being¡¡as¡¡something£»¡¡but£»¡¡as¡¡the¡¡one£»¡¡is¡¡immediately¡¡this¡¡negative¡¡point¡¡itself¡£¡¡But¡¡the¡¡being¡¡which
here¡¡is¡¡limited¡¡is¡¡essentially¡¡a¡¡continuity£»¡¡by¡¡virtue¡¡of¡¡which¡¡it¡¡passes¡¡beyond¡¡the¡¡limit£»¡¡beyond¡¡this
one£»¡¡to¡¡which¡¡it¡¡is¡¡indifferent¡£¡¡Real¡¡discrete¡¡quantity¡¡is¡¡thus¡¡a¡¡quantity£»¡¡or¡¡quantum¡­quantity¡¡as¡¡a
determinate¡¡being¡¡and¡¡a¡¡something¡£

Since¡¡the¡¡one¡¡which¡¡is¡¡a¡¡limit¡¡includes¡¡within¡¡itself¡¡the¡¡many¡¡ones¡¡of¡¡discrete¡¡quantity£»¡¡it¡¡equally
posits¡¡them¡¡as¡¡sublated¡¡within¡¡it£»¡¡and¡¡because¡¡it¡¡is¡¡a¡¡limit¡¡of¡¡continuity¡¡simply¡¡as¡¡such£»¡¡the
distinction¡¡between¡¡continuous¡¡and¡¡discrete¡¡magnitude¡¡is¡¡here¡¡of¡¡no¡¡significance£»¡¡or£»¡¡more
correctly£»¡¡it¡¡is¡¡a¡¡limit¡¡to¡¡the¡¡continuity¡¡of¡¡the¡¡one¡¡as¡¡much¡¡as¡¡of¡¡the¡¡other£»¡¡both¡¡undergo¡¡transition
into¡¡quanta¡£

Chapter¡¡2¡¡Quantum

Quantum£»¡¡which¡¡to¡¡begin¡¡with¡¡is¡¡quantity¡¡with¡¡a¡¡determinateness¡¡or¡¡limit¡¡in¡¡general¡¡is£»¡¡in¡¡its
complete¡¡determinateness£»¡¡number¡£¡¡Quantum¡¡differentiates¡¡itself¡¡secondly£»¡¡into¡¡£¨a£©¡¡extensive
quantum£»¡¡in¡¡which¡¡the¡¡limit¡¡is¡¡a¡¡limitation¡¡of¡¡the¡¡determinately¡¡existent¡¡plurality£»¡¡and¡¡£¨b£©¡¡intensive
quantum¡¡or¡¡degree£»¡¡the¡¡determinate¡¡being¡¡having¡¡made¡¡the¡¡transition¡¡into¡¡being¡­for¡­self¡£¡¡Intensive
quantum¡¡as¡¡both¡¡for¡¡itself¡¡and¡¡at¡¡the¡¡same¡¡time¡¡immediately¡¡outside¡¡itself¡¡¡ª¡¡since¡¡it¡¡is¡¡an
indifferent¡¡limit¡¡¡ª¡¡has¡¡its¡¡determinateness¡¡in¡¡an¡¡other¡£¡¡As¡¡this¡¡manifest¡¡contradiction¡¡of¡¡being
determined¡¡simply¡¡within¡¡itself¡¡yet¡¡having¡¡its¡¡determinateness¡¡outside¡¡it£»¡¡pointing¡¡outside¡¡itself¡¡for¡¡it£»
quantum¡¡posited¡¡as¡¡being¡¡in¡¡its¡¡own¡¡self¡¡external¡¡to¡¡itself£»¡¡passes¡¡over¡¡thirdly£»¡¡into¡¡quantitative
infinity¡£

A¡£¡¡NUMBER

Quantity¡¡is¡¡quantum£»¡¡or¡¡has¡¡a¡¡limit£»¡¡both¡¡as¡¡continuous¡¡and¡¡as¡¡discrete¡¡magnitude¡£¡¡The¡¡difference
between¡¡these¡¡two¡¡kinds¡¡has¡¡here£»¡¡in¡¡the¡¡first¡¡instance£»¡¡no¡¡immediate¡¡significance¡£

The¡¡very¡¡nature¡¡of¡¡quantity¡¡as¡¡sublated¡¡being¡­for¡­self¡¡is¡¡ipso¡¡facto¡¡to¡¡be¡¡indifferent¡¡to¡¡its¡¡limit¡£¡¡But
equally£»¡¡too£»¡¡quantity¡¡is¡¡not¡¡unaffected¡¡by¡¡the¡¡limit¡¡or¡¡by¡¡being£»¡¡a¡¡quantum£»¡¡for¡¡it¡¡contains¡¡within
itself¡¡as¡¡its¡¡own¡¡moment¡¡the¡¡one£»¡¡which¡¡is¡¡absolutely¡¡determined¡¡and¡¡which£»¡¡therefore£»¡¡as¡¡posited
in¡¡the¡¡continuity¡¡or¡¡unity¡¡of¡¡quantity£»¡¡is¡¡its¡¡limit£»¡¡but¡¡a¡¡limit¡¡which¡¡remains¡¡what¡¡it¡¡has¡¡become£»
simply¡¡a¡¡one¡£¡¡

This¡¡one¡¡is¡¡thus¡¡the¡¡principle¡¡of¡¡quantum£»¡¡but¡¡as¡¡the¡¡one¡¡of¡¡quantity¡£¡¡Hence£»¡¡first£»¡¡it¡¡is¡¡continuous£»
it¡¡is¡¡a¡¡unity£»¡¡secondly£»¡¡it¡¡is¡¡discrete£»¡¡a¡¡plurality¡¡of¡¡ones£»¡¡which¡¡is¡¡implicit¡¡in¡¡continuous£»¡¡or¡¡explicit¡¡in
discrete¡¡magnitude£»¡¡the¡¡ones¡¡having¡¡equality¡¡with¡¡one¡¡another£»¡¡possessing¡¡the¡¡said¡¡continuity£»¡¡the
same¡¡unity¡£¡¡Thirdly£»¡¡this¡¡one¡¡is¡¡also¡¡a¡¡negation¡¡of¡¡the¡¡many¡¡ones¡¡as¡¡a¡¡simple¡¡limit£»¡¡an¡¡excluding¡¡of
its¡¡otherness¡¡from¡¡itself£»¡¡a¡¡determination¡¡of¡¡itself¡¡in¡¡opposition¡¡to¡¡other¡¡quanta¡£¡¡Thus¡¡the¡¡one¡¡is¡¡£§a£§
self¡­relating£»¡¡£§b£§¡¡enclosing¡¡and¡¡£§c£§¡¡other¡­excluding¡¡limit¡£

Quantum¡¡completely¡¡posited¡¡in¡¡these¡¡determinations¡¡is¡¡number¡£¡¡The¡¡complete¡¡positedness¡¡lies¡¡in
the¡¡existence¡¡of¡¡the¡¡limit¡¡as¡¡a¡¡plurality¡¡and¡¡so¡¡in¡¡its¡¡distinction¡¡from¡¡the¡¡unity¡£¡¡Consequently£»
number¡¡appears¡¡as¡¡a¡¡discrete¡¡magnitude£»¡¡but¡¡in¡¡the¡¡unity¡¡it¡¡equally¡¡possesses¡¡continuity¡£¡¡It¡¡is£»
therefore£»¡¡also¡¡quantum¡¡in¡¡its¡¡complete¡¡determinateness£»¡¡for¡¡its¡¡principle¡¡the¡¡one£»¡¡the¡¡absolutely
determinate¡£¡¡Continuity£»¡¡in¡¡which¡¡the¡¡one¡¡is¡¡present¡¡only¡¡in¡¡principle£»¡¡as¡¡a¡¡sublated¡¡moment¡¡¡ª
posited¡¡as¡¡a¡¡unity¡¡¡ª¡¡is¡¡the¡¡form¡¡of¡¡indeterminateness¡£

Quantum£»¡¡merely¡¡as¡¡such£»¡¡is¡¡limited¡¡generally£»¡¡its¡¡limit¡¡is¡¡an¡¡abstract¡¡simple¡¡determinateness¡¡of¡¡it¡£
But¡¡in¡¡quantum¡¡as¡¡number£»¡¡this¡¡limit¡¡is¡¡posited¡¡as¡¡manifold¡¡within¡¡itself¡£¡¡It¡¡contains¡¡the¡¡many¡¡ones
which¡¡constitute¡¡its¡¡determinate¡¡being£»¡¡but¡¡does¡¡not¡¡contain¡¡them¡¡in¡¡an¡¡indeterminate¡¡manner£»¡¡for
the¡¡determinateness¡¡of¡¡the¡¡limit¡¡falls¡¡in¡¡them£»¡¡the¡¡limit¡¡excludes¡¡other¡¡determinate¡¡being£»¡¡that¡¡is£»
other¡¡pluralities¡¡and¡¡the¡¡ones¡¡it¡¡encloses¡¡are¡¡a¡¡specific¡¡aggregate£»¡¡the¡¡amount¡¡¡ª¡¡which¡¡is¡¡the¡¡form
taken¡¡by¡¡discreteness¡¡in¡¡number¡¡¡ª¡¡the¡¡other¡¡to¡¡which¡¡is¡¡the¡¡unit£»¡¡the¡¡continuity¡¡of¡¡the¡¡amount¡£
Amount¡¡and¡¡unit¡¡constitute¡¡the¡¡moments¡¡of¡¡number¡£

As¡¡regards¡¡amount£»¡¡we¡¡must¡¡see¡¡more¡¡closely¡¡how¡¡the¡¡many¡¡ones¡¡of¡¡which¡¡it¡¡consists¡¡are¡¡present
in¡¡the¡¡limit£»¡¡it¡¡is¡¡correct¡¡to¡¡say¡¡of¡¡amount¡¡that¡¡it¡¡consists¡¡of¡¡the¡¡many£»¡¡for¡¡the¡¡ones¡¡are¡¡in¡¡it¡¡not¡¡as
sublated¡¡but¡¡as¡¡affirmatively¡¡present£»¡¡only¡¡posited¡¡with¡¡the¡¡excluding¡¡limit¡¡to¡¡which¡¡they¡¡are
indifferent¡£¡¡This£»¡¡however£»¡¡is¡¡not¡¡indifferent¡¡to¡¡them¡£¡¡In¡¡the¡¡sphere¡¡of¡¡determinate¡¡being£»¡¡the¡¡relation
of¡¡the¡¡limit¡¡to¡¡it¡¡was¡¡primarily¡¡such¡¡that¡¡the¡¡determinate¡¡being¡¡persisted¡¡as¡¡the¡¡affirmative¡¡on¡¡this
side¡¡of¡¡its¡¡limit£»¡¡while¡¡the¡¡limit£»¡¡the¡¡negation£»¡¡was¡¡found¡¡outside¡¡on¡¡the¡¡border¡¡of¡¡the¡¡determinate
being£»¡¡similarly£»¡¡the¡¡breaking¡­off¡¡£§in¡¡the¡¡counting£§¡¡of¡¡the¡¡many¡¡ones¡¡and¡¡the¡¡exclusion¡¡of¡¡other¡¡ones
appears¡¡as¡¡a¡¡determination¡¡falling¡¡outside¡¡the¡¡enclosed¡¡ones¡£¡¡But¡¡in¡¡the¡¡qualitative¡¡sphere¡¡it¡¡was
found¡¡that¡¡the¡¡limit¡¡pervades¡¡the¡¡determinate¡¡being£»¡¡is¡¡coextensive¡¡with¡¡it£»¡¡and¡¡consequently¡¡that¡¡it
lies¡¡in¡¡the¡¡nature¡¡of¡¡something¡¡to¡¡be¡¡limited£»¡¡that¡¡is£»¡¡finite¡£¡¡In¡¡the¡¡quantitative¡¡sphere¡¡a¡¡number£»¡¡say¡¡a
hundred£»¡¡is¡¡conceived¡¡in¡¡such¡¡a¡¡manner¡¡that¡¡the¡¡hundredth¡¡one¡¡alone¡¡limits¡¡the¡¡many¡¡to¡¡make¡¡them
a¡¡hundred¡£¡¡In¡¡one

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ