±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > science of logic >

µÚ18ÕÂ

science of logic-µÚ18ÕÂ

С˵£º science of logic ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



difference¡¡between¡¡the¡¡two¡¡forces£»¡¡it¡¡happened¡¡that¡¡one¡¡had¡¡passed¡¡over¡¡into¡¡the¡¡other¡£¡¡Thus
through¡¡repulsion£»¡¡on¡¡the¡¡other¡¡hand£»¡¡matter¡¡is¡¡supposed¡¡to¡¡fill¡¡a¡¡space£»¡¡and¡¡consequently¡¡through
repulsion¡¡the¡¡empty¡¡space¡¡left¡¡by¡¡the¡¡force¡¡of¡¡attraction¡¡vanishes¡£¡¡In¡¡point¡¡of¡¡fact¡¡repulsion£»¡¡in
doing¡¡away¡¡with¡¡empty¡¡space£»¡¡also¡¡destroys¡¡the¡¡negative¡¡relation¡¡of¡¡the¡¡atoms¡¡or¡¡ones£»¡¡that¡¡is£»
their¡¡repulsion¡¡of¡¡one¡¡another£»¡¡in¡¡¡­other¡¡words£»¡¡repulsion¡¡is¡¡determined¡¡as¡¡the¡¡opposite¡¡of¡¡itself¡£

To¡¡this¡¡effacing¡¡of¡¡the¡¡differences¡¡there¡¡is¡¡added¡¡the¡¡confusion¡¡arising¡¡from¡¡the¡¡fact¡¡that£»¡¡as¡¡we
observed¡¡at¡¡the¡¡beginning£»¡¡Kant's¡¡exposition¡¡of¡¡the¡¡opposed¡¡forces¡¡is¡¡analytic£»¡¡and¡¡whereas¡¡matter
is¡¡supposed¡¡to¡¡be¡¡derived¡¡from¡¡its¡¡elements£»¡¡it¡¡is¡¡presented¡¡throughout¡¡the¡¡entire¡¡discourse¡¡as
already¡¡formed¡¡and¡¡constituted¡£¡¡In¡¡the¡¡definition¡¡of¡¡surface¡¡and¡¡penetrative¡¡force¡¡both¡¡are¡¡assumed
as¡¡motive¡¡forces¡¡by¡¡means¡¡of¡¡which¡¡matter¡¡is¡¡supposed¡¡to¡¡be¡¡able¡¡to¡¡act¡¡in¡¡one¡¡or¡¡other¡¡of¡¡these
ways¡£¡¡Here£»¡¡therefore£»¡¡they¡¡are¡¡represented¡¡as¡¡forces£»¡¡not¡¡through¡¡which¡¡matter¡¡first¡¡comes¡¡into
being¡¡but¡¡through¡¡which¡¡matter£»¡¡as¡¡an¡¡already¡¡finished¡¡product£»¡¡is¡¡only¡¡set¡¡in¡¡motion¡£¡¡But¡¡in¡¡so¡¡far
as¡¡we¡¡are¡¡speaking¡¡of¡¡the¡¡forces¡¡through¡¡which¡¡different¡¡bodies¡¡act¡¡on¡¡one¡¡another¡¡and¡¡are¡¡set¡¡in
motion£»¡¡this¡¡is¡¡something¡¡quite¡¡different¡¡from¡¡the¡¡determination¡¡and¡¡relation¡¡which¡¡these¡¡forces
were¡¡supposed¡¡to¡¡have¡¡as¡¡£§constitutive£§¡¡moments¡¡of¡¡matter¡£

The¡¡same¡¡opposition¡¡of¡¡attractive¡¡and¡¡repulsive¡¡forces¡¡is¡¡made¡¡by¡¡their¡¡more¡¡developed¡¡form¡¡of
centripetal¡¡and¡¡centrifugal¡¡forces¡£¡¡These¡¡appear¡¡to¡¡offer¡¡an¡¡essential¡¡distinction£»¡¡since¡¡in¡¡their
sphere¡¡there¡¡is¡¡a¡¡fixed¡¡single¡¡one£»¡¡a¡¡centre£»¡¡in¡¡relation¡¡to¡¡which¡¡the¡¡other¡¡ones¡¡behave¡¡as¡¡not¡¡for
themselves£»¡¡so¡¡that¡¡the¡¡difference¡¡between¡¡the¡¡forces¡¡can¡¡be¡¡linked¡¡to¡¡this¡¡presupposed¡¡difference
between¡¡a¡¡single¡¡central¡¡one¡¡and¡¡the¡¡others¡¡which¡¡are¡¡not¡¡independent¡¡relatively¡¡to¡¡it¡£¡¡But¡¡if¡¡they
are¡¡to¡¡be¡¡used¡¡for¡¡explanation¡­for¡¡which¡¡purpose¡¡they¡¡are¡¡assumed¡¡to¡¡be¡¡£¨like¡¡the¡¡forces¡¡of
repulsion¡¡and¡¡attraction£©¡¡in¡¡an¡¡inverse¡¡quantitative¡¡ratio¡¡so¡¡that¡¡the¡¡one¡¡increases¡¡as¡¡the¡¡other
decreases¡­then¡¡the¡¡phenomenon¡¡of¡¡the¡¡motion¡¡and¡¡its¡¡inequality¡¡ought¡¡to¡¡be¡¡the¡¡result¡¡of¡¡these
forces¡¡which¡¡were¡¡assumed¡¡for¡¡the¡¡purpose¡¡of¡¡explanation¡£¡¡However£»¡¡one¡¡need¡¡only¡¡examine¡¡the
accounts¡¡£¨any¡¡of¡¡them¡¡will¡¡do£©¡¡of¡¡a¡¡phenomenon¡¡like¡¡the¡¡unequal¡¡velocity¡¡of¡¡a¡¡planet¡¡in¡¡its¡¡orbit
round¡¡the¡¡sun£»¡¡based¡¡on¡¡the¡¡opposition¡¡of¡¡these¡¡forces£»¡¡to¡¡become¡¡aware¡¡of¡¡the¡¡confusion¡¡which
prevails¡¡in¡¡such¡¡explanations£»¡¡and¡¡the¡¡impossibility¡¡of¡¡disentangling¡¡the¡¡magnitudes¡¡of¡¡the¡¡forces£»¡¡so
that¡¡the¡¡one¡¡which¡¡in¡¡the¡¡explanation¡¡is¡¡assumed¡¡to¡¡be¡¡decreasing¡¡can¡¡just¡¡as¡¡well¡¡be¡¡assumed¡¡to
be¡¡increasing£»¡¡and¡¡vice¡¡versa¡£¡¡To¡¡make¡¡this¡¡evident¡¡would¡¡require¡¡a¡¡lengthier¡¡exposition¡¡than
could¡¡be¡¡given¡¡here£»¡¡but¡¡what¡¡is¡¡necessary¡¡for¡¡this¡¡purpose¡¡is¡¡adduced¡¡later¡¡on¡¡in¡¡connection¡¡with
the¡¡inverted¡¡relation¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡Section¡¡Two£º¡¡Magnitude¡¡£¨Quantity£©

The¡¡difference¡¡between¡¡quantity¡¡and¡¡quality¡¡has¡¡been¡¡stated¡£¡¡Quality¡¡is¡¡the¡¡first£»¡¡immediate
determinateness£»¡¡quantity¡¡is¡¡the¡¡determinateness¡¡which¡¡has¡¡become¡¡indifferent¡¡to¡¡being£»¡¡a¡¡limit
which¡¡is¡¡just¡¡as¡¡much¡¡no¡¡limit£»¡¡being¡­for¡­self¡¡which¡¡is¡¡absolutely¡¡identical¡¡with¡¡being¡­for¡­other¡­a
repulsion¡¡of¡¡the¡¡many¡¡ones¡¡which¡¡is¡¡directly¡¡the¡¡non¡­repulsion£»¡¡the¡¡continuity¡¡of¡¡them¡£

Because¡¡that¡¡which¡¡is¡¡for¡¡itself¡¡is¡¡now¡¡posited¡¡as¡¡not¡¡excluding¡¡its¡¡other£»¡¡but¡¡rather¡¡as¡¡affirmatively
continuing¡¡itself¡¡into¡¡it£»¡¡it¡¡is¡¡otherness¡¡in¡¡so¡¡far¡¡as¡¡determinate¡¡being¡¡again¡¡appears¡¡in¡¡this
continuity¡¡and¡¡its¡¡determinateness¡¡is¡¡at¡¡the¡¡same¡¡time¡¡no¡¡longer¡¡in¡¡a¡¡simple¡¡self¡­relation£»¡¡no¡¡longer
an¡¡immediate¡¡determinateness¡¡of¡¡the¡¡determinately¡¡existent¡¡something£»¡¡but¡¡is¡¡posited¡¡as
self¡­repelling£»¡¡as¡¡in¡¡fact¡¡having¡¡the¡¡relation¡­to¡­self¡¡as¡¡a¡¡determinateness¡¡in¡¡another¡¡something
£¨which¡¡is¡¡for¡¡itself£»¡¡and¡¡since¡¡they¡¡are¡¡at¡¡the¡¡same¡¡time¡¡indifferent£»¡¡relationless¡¡limits¡¡reflected¡¡into
themselves£»¡¡the¡¡determinateness¡¡in¡¡general¡¡is¡¡outside¡¡itself£»¡¡an¡¡absolutely¡¡self¡­external
determinateness¡¡and¡¡an¡¡equally¡¡external¡¡something£»¡¡such¡¡a¡¡limit£»¡¡the¡¡indifference¡¡of¡¡the¡¡limit¡¡within
itself¡¡and¡¡of¡¡the¡¡something¡¡to¡¡the¡¡limit£»¡¡constitutes¡¡the¡¡quantitative¡¡determinateness¡¡of¡¡the
something¡£

In¡¡the¡¡first¡¡place£»¡¡pure¡¡quantity¡¡is¡¡to¡¡be¡¡distinguished¡¡from¡¡itself¡¡as¡¡a¡¡determinate¡¡quantity£»¡¡from
quantum¡£¡¡As¡¡the¡¡former£»¡¡it¡¡is¡¡in¡¡the¡¡first¡¡place¡¡real¡¡being¡­for¡­self¡¡which¡¡has¡¡returned¡¡into¡¡itself¡¡and
which¡¡as¡¡yet¡¡contains¡¡no¡¡determinateness£º¡¡a¡¡compact£»¡¡infinite¡¡unity¡¡which¡¡continues¡¡itself¡¡into¡¡itself¡£

Secondly£»¡¡this¡¡develops¡¡a¡¡determinateness¡¡which¡¡is¡¡posited¡¡in¡¡it¡¡as¡¡one¡¡which¡¡is¡¡at¡¡the¡¡same¡¡time
no¡¡determinateness£»¡¡as¡¡only¡¡an¡¡external¡¡one¡£¡¡It¡¡becomes¡¡quantum¡£¡¡Quantum¡¡is¡¡indifferent
determinateness£»¡¡that¡¡is£»¡¡a¡¡self¡­transcending£»¡¡self¡­negating¡¡determinateness£»¡¡as¡¡this¡¡otherness¡¡of
otherness¡¡it¡¡relapses¡¡into¡¡the¡¡infinite¡¡progress¡£¡¡But¡¡the¡¡infinite¡¡quantum¡¡is¡¡the¡¡indifferent
determinateness¡¡sublated£»¡¡it¡¡is¡¡the¡¡restoration¡¡of¡¡quality¡£

Thirdly£»¡¡quantum¡¡in¡¡a¡¡qualitative¡¡form¡¡is¡¡quantitative¡¡ratio¡£¡¡Quantum¡¡transcends¡¡itself¡¡only¡¡generally£º
in¡¡ratio£»¡¡however£»¡¡its¡¡transition¡¡into¡¡its¡¡otherness¡¡is¡¡such¡¡that¡¡this¡¡otherness¡¡in¡¡which¡¡it¡¡has¡¡its
determination¡¡is¡¡at¡¡the¡¡same¡¡time¡¡posited£»¡¡is¡¡another¡¡quantum¡£¡¡Thus¡¡quantum¡¡has¡¡returned¡¡into
itself¡¡and¡¡in¡¡its¡¡otherness¡¡is¡¡related¡¡to¡¡itself¡£

At¡¡the¡¡base¡¡of¡¡this¡¡ratio¡¡there¡¡is¡¡still¡¡the¡¡externality¡¡of¡¡quantum£»¡¡the¡¡quanta¡¡which¡¡are¡¡related¡¡to
each¡¡other¡¡are¡¡indifferent£»¡¡that¡¡is£»¡¡they¡¡have¡¡their¡¡self¡­relation¡¡in¡¡such¡¡self¡­externality¡£¡¡The¡¡ratio¡¡is
thus¡¡only¡¡a¡¡formal¡¡unity¡¡of¡¡quality¡¡and¡¡quantity¡£¡¡Its¡¡dialectic¡¡is¡¡its¡¡transition¡¡into¡¡their¡¡absolute¡¡unity£»
into¡¡Measure¡£

Remark£º¡¡Something's¡¡Limit¡¡as¡¡Quality

Chapter¡¡1¡¡Quantity

Quantity¡¡is¡¡sublated¡¡being¡­for¡­self£»¡¡the¡¡repelling¡¡one¡¡which¡¡related¡¡itself¡¡only¡¡negatively¡¡to¡¡the
excluded¡¡one£»¡¡having¡¡passed¡¡over¡¡into¡¡relation¡¡to¡¡it£»¡¡treats¡¡the¡¡other¡¡as¡¡identical¡¡with¡¡itself£»¡¡and¡¡in
doing¡¡so¡¡has¡¡lost¡¡its¡¡determination£º¡¡being¡­for¡­self¡¡has¡¡passed¡¡over¡¡into¡¡attraction¡£¡¡The¡¡absolute
brittleness¡¡of¡¡the¡¡repelling¡¡one¡¡has¡¡melted¡¡away¡¡into¡¡this¡¡unity¡¡which£»¡¡however£»¡¡as¡¡containing¡¡this
one£»¡¡is¡¡at¡¡the¡¡same¡¡time¡¡determined¡¡by¡¡the¡¡immanent¡¡repulsion£»¡¡and¡¡as¡¡unity¡¡of¡¡the¡¡self¡­externality
is¡¡unity¡¡with¡¡itself¡£¡¡Attraction¡¡is¡¡in¡¡this¡¡way¡¡the¡¡moment¡¡of¡¡continuity¡¡in¡¡quantity¡£

Continuity¡¡is£»¡¡therefore£»¡¡simple£»¡¡self¡­same¡¡self¡­relation£»¡¡which¡¡is¡¡not¡¡interrupted¡¡by¡¡any¡¡limit¡¡or
exclusion£»¡¡it¡¡is¡¡not£»¡¡however£»¡¡an¡¡immediate¡¡unity£»¡¡but¡¡a¡¡unity¡¡of¡¡ones¡¡which¡¡possess¡¡being¡­for¡­self¡£
The¡¡asunderness¡¡of¡¡the¡¡plurality¡¡is¡¡still¡¡contained¡¡in¡¡this¡¡unity£»¡¡but¡¡at¡¡the¡¡same¡¡time¡¡as¡¡not
differentiating¡¡or¡¡interrupting¡¡it¡£¡¡In¡¡continuity£»¡¡the¡¡plurality¡¡is¡¡posited¡¡as¡¡it¡¡is¡¡in¡¡itself£»¡¡the¡¡many¡¡are
all¡¡alike£»¡¡each¡¡is¡¡the¡¡same¡¡as¡¡the¡¡other¡¡and¡¡the¡¡plurality¡¡is£»¡¡consequently£»¡¡a¡¡simple£»¡¡undifferentiated
sameness¡£¡¡Continuity¡¡is¡¡this¡¡moment¡¡of¡¡self¡­sameness¡¡of¡¡the¡¡asunderness£»¡¡the¡¡self¡­continuation¡¡of
the¡¡different¡¡ones¡¡into¡¡those¡¡from¡¡which¡¡they¡¡are¡¡distinguished¡£

In¡¡continuity£»¡¡therefore£»¡¡magnitude¡¡immediately¡¡possesses¡¡the¡¡moment¡¡of¡¡discreteness¡­repulsion£»
as¡¡now¡¡a¡¡moment¡¡in¡¡quantity¡£¡¡Continuity¡¡is¡¡self¡­sameness£»¡¡but¡¡of¡¡the¡¡Many¡¡which£»¡¡however£»¡¡do¡¡not
become¡¡exclusive£»¡¡it¡¡is¡¡repulsion¡¡which¡¡expands¡¡the¡¡selfsameness¡¡to¡¡continuity¡£¡¡Hence
discreteness£»¡¡on¡¡its¡¡side£»¡¡is¡¡a¡¡coalescent¡¡discreteness£»¡¡where¡¡the¡¡ones¡¡are¡¡not¡¡connected¡¡by¡¡the
void£»¡¡by¡¡the¡¡negative£»¡¡but¡¡by¡¡their¡¡own¡¡continuity¡¡and¡¡do¡¡not¡¡interrupt¡¡this¡¡self¡­sameness¡¡in¡¡the
many¡£

Quantity¡¡is¡¡the¡¡unity¡¡of¡¡these¡¡moments¡¡of¡¡continuity¡¡and¡¡discreteness£»¡¡but¡¡at¡¡first¡¡it¡¡is¡¡so¡¡in¡¡the¡¡form
of¡¡one¡¡of¡¡them£»¡¡continuity£»¡¡as¡¡a¡¡result¡¡of¡¡the¡¡dialectic¡¡of¡¡being¡­for¡­self£»¡¡which¡¡has¡¡collapsed¡¡into
the¡¡form¡¡of¡¡self¡­identical¡¡immediacy¡£¡¡Quantity¡¡is£»¡¡as¡¡such£»¡¡this¡¡simple¡¡result¡¡in¡¡so¡¡far¡¡as
being¡­for¡­self¡¡has¡¡not¡¡yet¡¡developed¡¡its¡¡moments¡¡and¡¡posited¡¡them¡¡within¡¡itself¡£¡¡It¡¡contains¡¡them
to¡¡begin¡¡with¡¡as¡¡being¡­for¡­self¡¡posited¡¡as¡¡it¡¡is¡¡in¡¡truth¡£¡¡The¡¡determination¡¡of¡¡being¡­for¡­self¡¡was¡¡to
be¡¡a¡¡self¡­sublating¡¡relation¡­to¡­self£»¡¡a¡¡perpetual¡¡coming¡­out¡­of¡­itself¡£¡¡But¡¡what¡¡is¡¡repelled¡¡is¡¡itself£»
repulsion¡¡is£»¡¡therefore£»¡¡the¡¡creative¡¡flowing¡¡away¡¡of¡¡itself¡£¡¡On¡¡account¡¡of¡¡the¡¡self¡­sameness¡¡of¡¡what
is¡¡repelled£»¡¡this¡¡distinguis

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ