科普-中华学生百科全书-第530章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
之义。)
这样的“回文结对,携手并进”现象,对 13、14、22、23、31、32、40、
41 等各对乘数(每相邻两对乘数的对应公差均等于 9)也应如此。例如:
12345679×67=827160493
12345679×68=839506172
遗传因子 “缺 8 数”还能“生儿育女”,这些后裔秉承其“遗传因子”,
完全承袭上面的这些特征,所以这个庞大家族的成员几乎都同其始祖
12345679 具有同样的本领。
例如,506172839 是“缺 8 数”与 41 的乘积,所以它是一个衍生物。
我们看到,506172839×3=1518518517。
如前所述,“三位一体”模式又来到我们面前。
能被 2 和 5 整除的数
一个数的末一位数能被 2 和 5 整除,这个数就能被 2 和 5 整除。具体地
说,个位上是 0、2、4、6、8 的数,都能被 2 整除。个位上是 0 或是 5 的数,
都能被 5 整除。
例如:128、64、30 的个位分别是 8、4、0,这 3 个数都能被 2 整除。
281、165、79 的个位分别是 1、5、9,那么这 3 个数都不能被 2 整除。
在上面的 6 个数中,30 和 165 的个位分别是 0 和 5,这两个数能被 5 整
除,其他各数均不能被 5 整除。
能被 3 和 9 整除的数
一个数各个数位上的数的和能被 3 或 9 整除,这个数就能被 3 或 9 整除。
7+4+1+6=18,18 能被 3 整除,也能被 9 整除,所以 7416 能被 3 整除,
也能被 9 整除。
再如:5739 各个数位上的数之和是:
5+7+3+9=24,24 能被 3 整除,但不能被 9 整除,所以 5739 能被 3 整除,
而不能被 9 整除。
能被 4 和 25 整除的数
一个数的末两位数能被 4 或 25 整除,这个数就能被 4 或 25 整除。具体
地说,一个数的末两位数是 0,或是 4 的倍数这个数就是 4 的倍数,能被 4
整除。一个数的末两位数是 0 或是 25 的倍数,这个数就是 25 的倍数,能被
25 整除。
例如:324,4200,675,三个数中,324 的末两位数是 2424 是 4 的倍数,
所以 324 能被 4 整除。675 的末两位数是 7575 是 25 的倍数,所以 675 能被
25 整除,4200 的末两位数都是 0,所以4200 既能被 4 整除,又能被 25 整除。
能被 8 和 125 整除的数
一个数的末三位数能被 8 或 125 整除,这个数就能被 8 或 125 整除。具
体地说,一个数的末三位数是 0 或是 8 的倍数,就能被 8 整除;一个数的末
三位数是 0 或是 125 的倍数,就能被 125 整除。
例如:2168、32000、1875,3 个数中,2168 的末三位数是 168,168 是
8 的倍数,所以 2168 能被 8 整除。1875 的末三位数是 875,875 是 125 的倍
数,所以 1875 能被 125 整除。32000 的末三位数都是 0,所以 32000 既能被
8 整除,又能被 125 整除。
能被 7、11 和 13 整除的数
一个数末三位数字所表示的数与末三位以前的数字所表示的数的差(以
大减小),能被 7、11、13 整除,这个数就能被 7、11、13 整除。
例如:128114,由于 128…114=14,14 是 7 的倍数,所以 128114 能被 7
整除。
94146,由于 146…94=52,52 是 13 的倍数,所以 94146 能被 13 整除。
64152 由于 152…64=88,88 是 11 的倍数,所以 64152 能被 11 整除。
能被 11 整除的数,还可以用“奇偶位差法”来判定。一个数奇位上的数
之和与偶位上的数之和相减(以大减小),所得的差是 0 或是 11 的倍数时,
这个数就能被 11 整除。
例如:64152,奇位上的数之和是 6+1+2=9,偶位上的数之和是 4+5=9,
9…9=0,判断出 64152 能被 11 整除。
校庆“35”
校庆 35 周年了,为了庆祝这个日子,4 个同学用 35 这个数做游戏,游
戏的要求是:只能用 5 这个数字,或者只用 7 这个数字组成一个式子,其结
果等于 35。甲和乙分别用 4 个 5 和 4 个 7 组成 35,其式子如下:
甲:5×5+5+5=35
乙:7×7…7…7=35
另两个同学丙和丁分别用 5 个 5 和 5 个 7 组成 35。其式子如下:
丙:55…5×5+5=35
丁:77…7×7+7=35
这 4 个式子有一个特点,都是在 5×7 这个基本式子引申出来的。改变其
中一个数字,使它变成 1 和 11,以及 5 或 7 的关系,那么最后的式子中就可
以保持清一色。
比如:5×(5+1+1)=5×5+5+5=35
5×(11…5+1)=55…5×5+5=35
7×(7…1…1)=7×7…7…7=35
7×(11…7+1)=77…7×7+7=35
阿凡提新传
财主正在给 9 个亲戚分一筐苹果,阿凡提来了。这时财主正不知道怎么
分好。阿凡提说:“我来帮帮你的忙,保证给他们平均分好,但是有一个条
件,最后分剩下的给我。”财主答应了。阿凡提数了 70 多个苹果,分到最后,
阿凡提剩下的苹果比其他每人分得的还多。你知道阿凡提是怎么分的,他开
始拿出了 70 几个苹果?
解答:把题的意思变成数学语言,就是
7△÷9=○……□
其中○是商数,□是余数,要求余数最大。
由于被除数为 7△,所以○只能是 7 或 8,如果是 8,那么 7△必定在 72
到 79 之间,以 79 为例,有最大余数为 7。即
79÷9=8……7
但如果○为 7,它的最大余数应该是比除数少 1 的数,即 9…1=8,因此被
除数应是:
7×9+8=71
所以答案应是:
71÷9=7……8
因此,阿凡提最初拿出 71 个苹果,平分给 9 人,每人是 7 个苹果,而剩
下的留给阿凡提,阿凡提反而得到 8 个苹果。
跷跷板与不等式
游乐场里的跷跷板,大个儿总是沉沉地压向一端,而小个儿总是被抬到
高处,这与数学里的不等式是多么相像!
楞儿游泳班的 8 个孩子,这时也在游乐场里玩跷跷板。他们之中,有 5
个女孩子,3 个男孩子。女孩子的体重都是 25 公斤,男孩子的体重都是 30
公斤。
他们要在跷跷板上比个高低,女孩子占左边,男孩子占右边。只见女孩
子坐上去一个,那边男孩子上去一个又给压了下来。连续 3 个女孩子坐在左
边板上,3 个男孩子那边又沉沉地压下来。这时第 4 个女孩子再坐上去,左
边胜利了,还剩一个女孩子没有机会再上去了。
正在这时,从别处跑来一个男孩子,他向着那 3 个男孩子,说:“我来
帮你们。”于是,第 5 个女孩子又上了左边,新来的男孩子上了右边,果然,
男孩子这边反败为胜。
女孩子们不高兴了,说:“你太偏向了。”于是,他们之间达成了一个
协议:女孩子们下去 3 个,然后,这个男孩子坐在左边,与女孩子们在一道。
这样一变换阵式,却并没有改变女孩子们的境遇,那 3 个男孩子还是赢了。
试问:这个新来的男孩子的体重大概是多少?
解答:
假设:女孩子用 y 表示(体重为 y 公斤);
男孩子用 x 表示(体重为 x 公斤);
新来的男孩子用 w 表示(体重为 w 公斤)。
那么,新男孩子来了以后,两次竞赛的结果可用两个不等式表示:
5y<w+3x(1)
w+2y<3x(2)
由(1)式,得到:
w>5y…3x(3)
由(2)式,得到:
w<3x…2y(4)
由(3)式和(4)式,得到:
5y…3x<w<3x…2y
因为,x=30 公斤,y=25 公斤
所以:35 公斤<w<40 公斤
新来的男孩子,他的体重在 35 公斤到 40 公斤之间。
数学黑洞
在古希腊神话中,科林斯国王西西弗斯被罚将一块巨石推到一座山上,
但是无论他怎么努力,这块巨石总是在到达山顶之前不可避免地滚下来,于
是他只好重新再推,永无休止。著名的西西弗斯串就是根据这个故事而得名
的。
什么是西西弗斯串呢?也就是任取一个数,例如 35962,数出这数中的
偶数个数、奇数个数及所有数字的个数,就可得到 2(2 个偶数)、3(3 个
奇数)、5(总共五位数),用这 3 个数组成下一个数字串 235。对 235 重复
上述程序,就会得到 1、2、3,将数串 123 再重复进行,仍得 123。对这个程
序和数的“宇宙”来说,123 就是一个数字黑洞。
是否每一个数最后都能得到 123 呢?用一个大数试试看。例如:
88883337777444992222,在这个数中偶数、奇数及全部数字个数分别为 11、
9、20,将这 3 个数合起来得到 11920,对 11920 这个数串重复这个程序得到
235,再重复这个程序得到 123,于是便进入“黑洞”了。
这就是数学黑洞“西西弗斯串”。同学们努力学习,去探索、发现其中
的奥秘吧!
哥德巴赫猜想
1742 年 6 月 7 日由德国数学家哥德巴赫给大数学家欧拉的信中,提出把
自然数表示成素数之和的猜想,人们把他们的书信往来归纳为两点:
(1)每个不小于 6 的偶数都是两个奇素数之和。例如,6=3+3,8=5+3,
100=3+97,……。
(2)每个不小于 9 的奇数都是三个奇素数之和,例如,9=3+3+3,
15=3+7+5,……99=3+7+89,……。
这就是著名的哥德巴赫猜想。从 1742 年到现在 200 多年来,这个问题吸
引了无数的数学家为之努力,取得不少成果,虽然至今没有最后证明哥德巴
赫猜想,但在证明过程中所产生的数学方法,推动了数学的发展。
为了解决这个问题,就要检验每个自然数都成立。由于自然数有无限多
个,所以一一验证是办不到的,因此,一位著名数学家说:哥德巴赫猜想的
困难程度,可以和任何没有解决的数学问题相匹敌。也有人把哥德巴赫猜想
比作数学王冠上的明珠。
为了摘取这颗明珠,数学家们采用了各种方法,其一是用筛法转化成殆
素数问题(所谓殆素数就是素因数的个数不超过某一素数的自然数),即证
明每一个充分大的偶数都是素因数个数分别不超过 a 与 b 的两个殆素数之
和,记为(a+b)。哥德巴赫猜想本质上就是最终要证明(1+1)成立。数学
家们经过艰苦卓绝的工作,先后已证明了(9+9),(7+7),(6+6),(5+5),……
(1+5),(1+4),(1+3),到 1966 年我国数学家陈景润证明了(1+2),
即证明了每一个充分大的偶数都是一个偶数与一个素因数的个数不超过 2 的
殆素数之和。离(1+1)只有一步之遥了,但这又是十分艰难的一步。1966
年至今已整整 30 年了,然而(1+1)仍是一个未解决的问题。
莱氏数学游戏
俄国诗人莱蒙托夫也是一个数学爱好者,他在服役时,有一次给周围的
军官做一个数学游戏。
他让一个军官先想好一个数,不要告诉别人,然后在这个数上加 25,心
算好了以后,再加上 125,然后再减去 37。把算好的结果减去原来想的那个
1
数,结果再乘5并除以2,最后,莱蒙托夫对那个军官说:答案是2822 。
那个军官感到非常惊奇。立刻又有另一个军官要求试一遍,结果都说明莱蒙
托夫计算得又快又准确。
你能知道是什么道理吗?
解答:如果设预先想好的数为 x,那么莱蒙托夫的计算式是:
1
(x+25+125…37…