±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > meteorology >

µÚ23ÕÂ

meteorology-µÚ23ÕÂ

С˵£º meteorology ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡





the¡¡luminous¡¡body¡¡is¡¡rising¡¡or¡¡setting¡¡the¡¡segment¡¡of¡¡the¡¡circle¡¡above



the¡¡earth¡¡which¡¡is¡¡cut¡¡off¡¡by¡¡the¡¡horizon¡¡will¡¡be¡¡a¡¡semi¡­circle£»¡¡if



the¡¡luminous¡¡body¡¡is¡¡above¡¡the¡¡horizon¡¡it¡¡will¡¡always¡¡be¡¡less¡¡than¡¡a



semicircle£»¡¡and¡¡it¡¡will¡¡be¡¡smallest¡¡when¡¡the¡¡luminous¡¡body¡¡culminates¡£



First¡¡let¡¡the¡¡luminous¡¡body¡¡be¡¡appearing¡¡on¡¡the¡¡horizon¡¡at¡¡the¡¡point



H£»¡¡and¡¡let¡¡KM¡¡be¡¡reflected¡¡to¡¡H£»¡¡and¡¡let¡¡the¡¡plane¡¡in¡¡which¡¡A¡¡is£»



determined¡¡by¡¡the¡¡triangle¡¡HKM£»¡¡be¡¡produced¡£¡¡Then¡¡the¡¡section¡¡of¡¡the



sphere¡¡will¡¡be¡¡a¡¡great¡¡circle¡£¡¡Let¡¡it¡¡be¡¡A¡¡£¨for¡¡it¡¡makes¡¡no¡¡difference



which¡¡of¡¡the¡¡planes¡¡passing¡¡through¡¡the¡¡line¡¡HK¡¡and¡¡determined¡¡by



the¡¡triangle¡¡KMH¡¡is¡¡produced£©¡£¡¡Now¡¡the¡¡lines¡¡drawn¡¡from¡¡H¡¡and¡¡K¡¡to¡¡a



point¡¡on¡¡the¡¡semicircle¡¡A¡¡are¡¡in¡¡a¡¡certain¡¡ratio¡¡to¡¡one¡¡another£»¡¡and



no¡¡lines¡¡drawn¡¡from¡¡the¡¡same¡¡points¡¡to¡¡another¡¡point¡¡on¡¡that



semicircle¡¡can¡¡have¡¡the¡¡same¡¡ratio¡£¡¡For¡¡since¡¡both¡¡the¡¡points¡¡H¡¡and



K¡¡and¡¡the¡¡line¡¡KH¡¡are¡¡given£»¡¡the¡¡line¡¡MH¡¡will¡¡be¡¡given¡¡too£»



consequently¡¡the¡¡ratio¡¡of¡¡the¡¡line¡¡MH¡¡to¡¡the¡¡line¡¡MK¡¡will¡¡be¡¡given



too¡£¡¡So¡¡M¡¡will¡¡touch¡¡a¡¡given¡¡circumference¡£¡¡Let¡¡this¡¡be¡¡NM¡£¡¡Then¡¡the



intersection¡¡of¡¡the¡¡circumferences¡¡is¡¡given£»¡¡and¡¡the¡¡same¡¡ratio¡¡cannot



hold¡¡between¡¡lines¡¡in¡¡the¡¡same¡¡plane¡¡drawn¡¡from¡¡the¡¡same¡¡points¡¡to¡¡any



other¡¡circumference¡¡but¡¡MN¡£



¡¡¡¡Draw¡¡a¡¡line¡¡DB¡¡outside¡¡of¡¡the¡¡figure¡¡and¡¡divide¡¡it¡¡so¡¡that



D£ºB=MH£ºMK¡£¡¡But¡¡MH¡¡is¡¡greater¡¡than¡¡MK¡¡since¡¡the¡¡reflection¡¡of¡¡the



cone¡¡is¡¡over¡¡the¡¡greater¡¡angle¡¡£¨for¡¡it¡¡subtends¡¡the¡¡greater¡¡angle¡¡of



the¡¡triangle¡¡KMH£©¡£¡¡Therefore¡¡D¡¡is¡¡greater¡¡than¡¡B¡£¡¡Then¡¡add¡¡to¡¡B¡¡a¡¡line



Z¡¡such¡¡that¡¡B£«Z£ºD=D£ºB¡£¡¡Then¡¡make¡¡another¡¡line¡¡having¡¡the¡¡same¡¡ratio¡¡to



B¡¡as¡¡KH¡¡has¡¡to¡¡Z£»¡¡and¡¡join¡¡MI¡£



¡¡¡¡Then¡¡I¡¡is¡¡the¡¡pole¡¡of¡¡the¡¡circle¡¡on¡¡which¡¡the¡¡lines¡¡from¡¡K¡¡fall¡£¡¡For



the¡¡ratio¡¡of¡¡D¡¡to¡¡IM¡¡is¡¡the¡¡same¡¡as¡¡that¡¡of¡¡Z¡¡to¡¡KH¡¡and¡¡of¡¡B¡¡to¡¡KI¡£¡¡If



not£»¡¡let¡¡D¡¡be¡¡in¡¡the¡¡same¡¡ratio¡¡to¡¡a¡¡line¡¡indifferently¡¡lesser¡¡or



greater¡¡than¡¡IM£»¡¡and¡¡let¡¡this¡¡line¡¡be¡¡IP¡£¡¡Then¡¡HK¡¡and¡¡KI¡¡and¡¡IP¡¡will



have¡¡the¡¡same¡¡ratios¡¡to¡¡one¡¡another¡¡as¡¡Z£»¡¡B£»¡¡and¡¡D¡£¡¡But¡¡the¡¡ratios



between¡¡Z£»¡¡B£»¡¡and¡¡D¡¡were¡¡such¡¡that¡¡Z£«B£ºD=D£º¡¡B¡£¡¡Therefore



IH£ºIP=IP£ºIK¡£¡¡Now£»¡¡if¡¡the¡¡points¡¡K£»¡¡H¡¡be¡¡joined¡¡with¡¡the¡¡point¡¡P¡¡by¡¡the



lines¡¡HP£»¡¡KP£»¡¡these¡¡lines¡¡will¡¡be¡¡to¡¡one¡¡another¡¡as¡¡IH¡¡is¡¡to¡¡IP£»¡¡for



the¡¡sides¡¡of¡¡the¡¡triangles¡¡HIP£»¡¡KPI¡¡about¡¡the¡¡angle¡¡I¡¡are



homologous¡£¡¡Therefore£»¡¡HP¡¡too¡¡will¡¡be¡¡to¡¡KP¡¡as¡¡HI¡¡is¡¡to¡¡IP¡£¡¡But¡¡this



is¡¡also¡¡the¡¡ratio¡¡of¡¡MH¡¡to¡¡MK£»¡¡for¡¡the¡¡ratio¡¡both¡¡of¡¡HI¡¡to¡¡IP¡¡and¡¡of



MH¡¡to¡¡MK¡¡is¡¡the¡¡same¡¡as¡¡that¡¡of¡¡D¡¡to¡¡B¡£¡¡Therefore£»¡¡from¡¡the¡¡points



H£»¡¡K¡¡there¡¡will¡¡have¡¡been¡¡drawn¡¡lines¡¡with¡¡the¡¡same¡¡ratio¡¡to¡¡one



another£»¡¡not¡¡only¡¡to¡¡the¡¡circumference¡¡MN¡¡but¡¡to¡¡another¡¡point¡¡as



well£»¡¡which¡¡is¡¡impossible¡£¡¡Since¡¡then¡¡D¡¡cannot¡¡bear¡¡that¡¡ratio¡¡to



any¡¡line¡¡either¡¡lesser¡¡or¡¡greater¡¡than¡¡IM¡¡£¨the¡¡proof¡¡being¡¡in¡¡either



case¡¡the¡¡same£©£»¡¡it¡¡follows¡¡that¡¡it¡¡must¡¡stand¡¡in¡¡that¡¡ratio¡¡to¡¡MI



itself¡£¡¡Therefore¡¡as¡¡MI¡¡is¡¡to¡¡IK¡¡so¡¡IH¡¡will¡¡be¡¡to¡¡MI¡¡and¡¡finally¡¡MH¡¡to



MK¡£



¡¡¡¡If£»¡¡then£»¡¡a¡¡circle¡¡be¡¡described¡¡with¡¡I¡¡as¡¡pole¡¡at¡¡the¡¡distance¡¡MI¡¡it



will¡¡touch¡¡all¡¡the¡¡angles¡¡which¡¡the¡¡lines¡¡from¡¡H¡¡and¡¡K¡¡make¡¡by¡¡their



reflection¡£¡¡If¡¡not£»¡¡it¡¡can¡¡be¡¡shown£»¡¡as¡¡before£»¡¡that¡¡lines¡¡drawn¡¡to



different¡¡points¡¡in¡¡the¡¡semicircle¡¡will¡¡have¡¡the¡¡same¡¡ratio¡¡to¡¡one



another£»¡¡which¡¡was¡¡impossible¡£¡¡If£»¡¡then£»¡¡the¡¡semicircle¡¡A¡¡be



revolved¡¡about¡¡the¡¡diameter¡¡HKI£»¡¡the¡¡lines¡¡reflected¡¡from¡¡the¡¡points



H£»¡¡K¡¡at¡¡the¡¡point¡¡M¡¡will¡¡have¡¡the¡¡same¡¡ratio£»¡¡and¡¡will¡¡make¡¡the



angle¡¡KMH¡¡equal£»¡¡in¡¡every¡¡plane¡£¡¡Further£»¡¡the¡¡angle¡¡which¡¡HM¡¡and¡¡MI



make¡¡with¡¡HI¡¡will¡¡always¡¡be¡¡the¡¡same¡£¡¡So¡¡there¡¡are¡¡a¡¡number¡¡of



triangles¡¡on¡¡HI¡¡and¡¡KI¡¡equal¡¡to¡¡the¡¡triangles¡¡HMI¡¡and¡¡KMI¡£¡¡Their



perpendiculars¡¡will¡¡fall¡¡on¡¡HI¡¡at¡¡the¡¡same¡¡point¡¡and¡¡will¡¡be¡¡equal¡£



Let¡¡O¡¡be¡¡the¡¡point¡¡on¡¡which¡¡they¡¡fall¡£¡¡Then¡¡O¡¡is¡¡the¡¡centre¡¡of¡¡the



circle£»¡¡half¡¡of¡¡which£»¡¡MN£»¡¡is¡¡cut¡¡off¡¡by¡¡the¡¡horizon¡£¡¡£¨See¡¡diagram¡££©



¡¡¡¡Next¡¡let¡¡the¡¡horizon¡¡be¡¡ABG¡¡but¡¡let¡¡H¡¡have¡¡risen¡¡above¡¡the



horizon¡£¡¡Let¡¡the¡¡axis¡¡now¡¡be¡¡HI¡£¡¡The¡¡proof¡¡will¡¡be¡¡the¡¡same¡¡for¡¡the



rest¡¡as¡¡before£»¡¡but¡¡the¡¡pole¡¡I¡¡of¡¡the¡¡circle¡¡will¡¡be¡¡below¡¡the¡¡horizon



AG¡¡since¡¡the¡¡point¡¡H¡¡has¡¡risen¡¡above¡¡the¡¡horizon¡£¡¡But¡¡the¡¡pole£»¡¡and



the¡¡centre¡¡of¡¡the¡¡circle£»¡¡and¡¡the¡¡centre¡¡of¡¡that¡¡circle¡¡£¨namely¡¡HI£©



which¡¡now¡¡determines¡¡the¡¡position¡¡of¡¡the¡¡sun¡¡are¡¡on¡¡the¡¡same¡¡line¡£¡¡But



since¡¡KH¡¡lies¡¡above¡¡the¡¡diameter¡¡AG£»¡¡the¡¡centre¡¡will¡¡be¡¡at¡¡O¡¡on¡¡the



line¡¡KI¡¡below¡¡the¡¡plane¡¡of¡¡the¡¡circle¡¡AG¡¡determined¡¡the¡¡position¡¡of



the¡¡sun¡¡before¡£¡¡So¡¡the¡¡segment¡¡YX¡¡which¡¡is¡¡above¡¡the¡¡horizon¡¡will¡¡be



less¡¡than¡¡a¡¡semicircle¡£¡¡For¡¡YXM¡¡was¡¡a¡¡semicircle¡¡and¡¡it¡¡has¡¡now¡¡been



cut¡¡off¡¡by¡¡the¡¡horizon¡¡AG¡£¡¡So¡¡part¡¡of¡¡it£»¡¡YM£»¡¡will¡¡be¡¡invisible¡¡when



the¡¡sun¡¡has¡¡risen¡¡above¡¡the¡¡horizon£»¡¡and¡¡the¡¡segment¡¡visible¡¡will¡¡be



smallest¡¡when¡¡the¡¡sun¡¡is¡¡on¡¡the¡¡meridian£»¡¡for¡¡the¡¡higher¡¡H¡¡is¡¡the



lower¡¡the¡¡pole¡¡and¡¡the¡¡centre¡¡of¡¡the¡¡circle¡¡will¡¡be¡£



¡¡¡¡In¡¡the¡¡shorter¡¡days¡¡after¡¡the¡¡autumn¡¡equinox¡¡there¡¡may¡¡be¡¡a



rainbow¡¡at¡¡any¡¡time¡¡of¡¡the¡¡day£»¡¡but¡¡in¡¡the¡¡longer¡¡days¡¡from¡¡the¡¡spring



to¡¡the¡¡autumn¡¡equinox¡¡there¡¡cannot¡¡be¡¡a¡¡rainbow¡¡about¡¡midday¡£¡¡The



reason¡¡for¡¡this¡¡is¡¡that¡¡when¡¡the¡¡sun¡¡is¡¡north¡¡of¡¡the¡¡equator¡¡the



visible¡¡arcs¡¡of¡¡its¡¡course¡¡are¡¡all¡¡greater¡¡than¡¡a¡¡semicircle£»¡¡and¡¡go



on¡¡increasing£»¡¡while¡¡the¡¡invisible¡¡arc¡¡is¡¡small£»¡¡but¡¡when¡¡the¡¡sun¡¡is



south¡¡of¡¡the¡¡equator¡¡the¡¡visible¡¡arc¡¡is¡¡small¡¡and¡¡the¡¡invisible¡¡arc



great£»¡¡and¡¡the¡¡farther¡¡the¡¡sun¡¡moves¡¡south¡¡of¡¡the¡¡equator¡¡the



greater¡¡is¡¡the¡¡invisible¡¡arc¡£¡¡Consequently£»¡¡in¡¡the¡¡days¡¡near¡¡the



summer¡¡solstice£»¡¡the¡¡size¡¡of¡¡the¡¡visible¡¡arc¡¡is¡¡such¡¡that¡¡before¡¡the



point¡¡H¡¡reaches¡¡the¡¡middle¡¡of¡¡that¡¡arc£»¡¡that¡¡is¡¡its¡¡point¡¡of



culmination£»¡¡the¡¡point¡¡is¡¡well¡¡below¡¡the¡¡horizon£»¡¡the¡¡reason¡¡for



this¡¡being¡¡the¡¡great¡¡size¡¡of¡¡the¡¡visible¡¡arc£»¡¡and¡¡the¡¡consequent



distance¡¡of¡¡the¡¡point¡¡of¡¡culmination¡¡from¡¡the¡¡earth¡£¡¡But¡¡in¡¡the¡¡days



near¡¡the¡¡winter¡¡solstice¡¡the¡¡visible¡¡arcs¡¡are¡¡small£»¡¡and¡¡the



contrary¡¡is¡¡necessarily¡¡the¡¡case£º¡¡for¡¡the¡¡sun¡¡is¡¡on¡¡the¡¡meridian



before¡¡the¡¡point¡¡H¡¡has¡¡risen¡¡far¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6







¡¡¡¡Mock¡¡suns£»¡¡and¡¡rods¡¡too£»¡¡are¡¡due¡¡to¡¡the¡¡causes¡¡we¡¡have¡¡described¡£



A¡¡mock¡¡sun¡¡is¡¡caused¡¡by¡¡the¡¡reflection¡¡of¡¡sight¡¡to¡¡the¡¡sun¡£¡¡Rods¡¡are



seen¡¡when¡¡sight¡¡reaches¡¡the¡¡sun¡¡under¡¡circumstances¡¡like¡¡those¡¡which



we¡¡described£»¡¡when¡¡there¡¡are¡¡clouds¡¡near¡¡the¡¡sun¡¡and¡¡sight¡¡is



reflected¡¡from¡¡some¡¡liquid¡¡surface¡¡to¡¡the¡¡cloud¡£¡¡Here¡¡the¡¡clouds



themselves¡¡are¡¡colourless¡¡when¡¡you¡¡look¡¡at¡¡them¡¡directly£»¡¡but¡¡in¡¡the



water¡¡they¡¡are¡¡full¡¡of¡¡rods¡£¡¡The¡¡only¡¡difference¡¡is¡¡that¡¡in¡¡this



latter¡¡case¡¡the¡¡colour¡¡of¡¡the¡¡cloud¡¡seems¡¡to¡¡reside¡¡in¡¡the¡¡water£»



but¡¡in¡¡the¡¡case¡¡of¡¡rods¡¡on¡¡the¡¡cloud¡¡itself¡£¡¡Rods¡¡appear¡¡when¡¡the



composition¡¡of¡¡the¡¡cloud¡¡is¡¡uneven£»¡¡dense¡¡in¡¡part¡¡and¡¡in¡¡part¡¡rare£»



and¡¡more¡¡and¡¡less¡¡watery¡¡in¡¡different¡¡parts¡£¡¡Then¡¡the¡¡sight¡¡is



reflected¡¡to¡¡the¡¡sun£º¡¡the¡¡mirrors¡¡are¡¡too¡¡small¡¡for¡¡the¡¡shape¡¡of¡¡the



sun¡¡to¡¡appear£»¡¡but£»¡¡the¡¡bright¡¡white¡¡light¡¡of¡¡the¡¡sun£»¡¡to¡¡which¡¡the



sight¡¡is¡¡reflected£»¡¡being¡¡seen¡¡on¡¡the¡¡uneven¡¡mirror£»¡¡its¡¡colour



appears¡¡partly¡¡red£»¡¡partly¡¡green¡¡or¡¡yellow¡£¡¡It¡¡makes¡¡no¡¡difference



whether¡¡sight¡¡passes¡¡through¡¡or¡¡is¡¡reflected¡¡from¡¡a¡¡medium¡¡of¡¡that



kind£»¡¡the¡¡colour¡¡is¡¡the¡¡same¡¡in¡¡both¡¡cases£»¡¡if¡¡it¡¡is¡¡red¡¡in¡¡the



first¡¡case¡¡it¡¡must¡¡be¡¡the¡¡same¡¡in¡¡the¡¡other¡£



¡¡¡¡Rods¡¡then¡¡are¡¡occasioned¡¡by¡¡the¡¡unevenness¡¡of¡¡the¡¡mirror¡­as



regards¡¡colour£»¡¡not¡¡form¡£¡¡The¡¡mock¡¡sun£»¡¡on¡¡the¡¡contrary£»¡¡appears



when¡¡the¡¡air¡¡is¡¡very¡¡uniform£»¡¡and¡¡of¡¡the¡¡same¡¡density¡¡throughout¡£¡¡This



is¡¡why¡¡it¡¡is¡¡white£º¡¡the¡¡uniform¡¡character¡¡of¡¡the¡¡mirror¡¡gives¡¡the



reflection¡¡in¡¡it¡¡a¡¡single¡¡colour£»¡¡while¡¡the¡¡fact¡¡that¡¡the¡¡sight¡¡is



reflected¡¡in¡¡a¡¡body¡¡and¡¡is¡¡thrown¡¡on¡¡the¡¡sun¡¡all¡¡together¡¡by¡¡the¡¡mist£»



which¡¡is¡¡dense¡¡and¡¡watery¡¡though¡¡not¡¡yet¡¡quite¡¡water£»¡¡causes¡¡the¡¡sun's



true¡¡colour¡¡to¡¡appear¡¡just¡¡as¡¡it¡¡does¡¡when¡¡the¡¡reflection¡¡is¡¡from



the¡¡dense£»¡¡smooth¡¡surface¡¡of¡¡copper¡£¡¡So¡¡the¡¡sun's¡¡colour¡¡being



white£»¡¡the¡¡mock¡¡sun¡¡is¡¡white¡¡too¡£¡¡This£»¡¡too£»¡¡is¡¡the¡¡reason¡¡why¡¡the



mock¡¡sun¡¡is¡¡a¡¡surer¡¡sign¡¡of¡¡rain¡¡than¡¡the¡¡rods£»¡¡it¡¡indicates£»¡¡more



than¡¡they¡¡do£»¡¡tha

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ