贝壳电子书 > 教育出版电子书 > 亚里斯多德全集 >

第79章

亚里斯多德全集-第79章

小说: 亚里斯多德全集 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



否则便不可能。我们只是正在研究本原。因素与中词的数量相等,证明的本原正是包含着它们的前提。正如存在着某些不可证明的前提,如“调是 Y ”或“调属于 Y ”一样,也存在着其他不可证明的前提,如“调不是 Y ”或“调不属于 Y ”,所以有些是作肯定陈述的原则,有些是作否定陈述的原则。 
当要证明一个结论时,我们必须设定表述 B 的直接词项,假定它是 0 然后假定 D 同样可表述 C 。如果我们继续这一进程,我们在证明中从不设定任何超出 A 范围的前提和属性,而是不断压缩两个词项的间距,直到主项和谓项成为不可分的或者成为一体。当前提变成直接的时,我们便得到了一个单位,只有直接的前提才是纯粹意义上的前提。正如在其他领域中最基本的单位是简单的东西,而且在各处不尽相同,如重量最基本的单位是梅纳,在音乐中是四分音,如此等等。同样,在三段论中,最基本的单位是直接的前提,而在证明和认知中它是一种理会或努斯,(。 
在肯定的三段论中,没有什么超过属性的范围。在否定的三段论中,( 1 )在一种方式中没有什么超出其属性需要被证明的词项的范围之外。例如,设定要通过 C 证明 A 不属于 B (前提是 C 属于所有 8 , A 不属于任何 0 ,随后,如果要证明 A 不属于任何 0 那么在 A 和 C 之间必须设定一个中项,过程就按照这种方式继续。( 2 )如果因为 C 属于所有 D ,但不属于任何 E (或不属于所有 D ,要求证明 D 不属于 B ,则中词决不会超出 B ,的范围, F 即是谓项被要求(不)属于它的主项。( 3 )在第三种方式上,中词决不会超出结论中被否定的主项和否定的谓项的范围。 
【 24 】因为证明要么是普遍的,要么是特殊的,或者要么是肯定的,要么是否定的,所以可以争论哪一个更好些。对于直接证明以及归谬法亦是如此。首先让我们考虑普遍的和特殊的证明。搞清楚这一问题后,再讨论直接证明和归谬法。 
有些人以下面这些方式考虑问题,所以认为特殊证明较好些。( 1 )可以使我们获得更多知识的证明即是更好的证明(因为这是证明的特长戎并且我们惜助事物自身认识某个特殊事物比借助他物认识它时可以获得更多的知识,例如,如果我们知道哥里斯库是个有教养的人,而不仅是知道某个人有教养,那么我们对“有教养的哥里斯库”就是有更多的知识。其他情况亦同样)。普遍证明表明不是某个特殊事物而是其他事物有一个既定的属性(例如,它不指明等腰三角形,因为它是等腰三角形,所以有一个既定的属性,而是因为它是一个三角形)。相反,特殊证明却指明正是事物自身具有这个属性。所以,如果借助事物自身指明事物中的证明是较好的证明,而特殊证明比普遍证明更具有这种性质,那么,特殊证明也就比普遍证明更优越。( 2 )进而,如果普遍离开特殊便不存在,而证明使人产生一种信念,即以为存在着一种证明赖以进展的具有这种性质的事物,它留居在事物之中作为特性,如与特殊的三角形不同的三角形,与特殊的图形不同的图形,与特殊的数目不同的数目。如果涉及存在的永不错误的证明比涉及不存在的错误证明更好;如果普遍证明属于后一类(以下述方式推理,例如,关于匀称,匀称是一个具有明确特征的东西,它既不是线,不是数,不是立体,也不是平面,而是不同于这一切的东西)——如果这类证明更接近于普遍证明,比特殊证明更少涉及存在,并且产生了某种错误的意见,那么可以推知普遍的证明不如特殊的证明。 
但事实上,( 1 )第一种论证既可应用于普遍证明,同样可应用于特殊证明。如果“内角之和等于两直角”这一属性不是作为等腰三角形而是作为三角形的一种形状,那么,知道这个形状拥有这种属性是因为它是等腰三角形的人,对事物的根本原因的认识,不及知道这个形状拥有这种属性是因为它是一个三角形的人。总而言之,如果一个属性不属于作为三角形的主体,但属性却被证明属于主体丫那么这便不是证明。但如果它确实属于作为三角形的主体,那么知道这种属性属于这种主体的人具有更丰富的知识。如果“三角形”是个广义词,具有一个不变的意义,那么,“三角形”一词便不是歧义的。并且如果“其内角总和等于两直角”这一属性属于一切三角形,那么是作为三角形的等腰三角形,而不是作为等腰三角形的三角形才拥有这样的角。因而,知道普遍的人比知道特殊的人具有更丰富的知识。由此推得,普遍证明高于特殊证明。( 2 )如果意义是不变的,普遍的词项不是歧义的,那么普遍证明的真实存在性并不会少于某些特殊证明,甚或比后者更为真实存在。因为普遍包括不朽的事物,反之,特殊则倾向于消亡,进而,没有必要因为普遍有一个独特的意义便断定它是脱离特殊的某个实在。在范畴不表示实体而表示性质、关系或活动的情况时更加不必要。如果这种断定已作出,那么错误不在于证明而在于听者。( 3 )证明就是证实原因和根据的三段论。普遍更具有原因的性质(拥有可依据自身的属性的主体本身即是其拥有那种属性的原因;普遍是首要的,所以普遍是原因),因而普遍证明更为优越,因为它证实原因或有根据的事物更为合适。( 4 )再者,当我们达到一个事实,它的存在或将要存在不依赖于其他事实时,我们就完成了对原因的探究,并且认为已经知道了它,因为我们通过这种方法所进行的探索的终点是事实本身的终极和界限。例如, X 为什么来?为了挣钱,挣钱是为了还债,还债是为了不做不公正的事。当我们按这种方式进展,达到一个既不依赖于他物也不以他物作为其对象的原因时,我们就说他是这个人到来——或已到来或将要到来——的目的,这样我们就最完全地懂得了这个人来的原因。如果同样的道理可应用于所有的原因和有根据的事物。如若在刚才所说的条件下我们对终极因的知识是最完全的,那么在一切其他情况下,当我们达到一个不再依赖于其他事实的事实时,我们的知识也是最完全的。所以当我们认识到一个图形的外角总和等于四个直角时,因为这个三角形是等腰三角形,那就仍然具有“为什么这个图形是等腰三角形”这个问题。答案是,它是一个三角形,而三角形具有这种属性是因为它是直线的图形。如果这一原因不再依赖他物,那么我们的知识就完全了。而我们的知识现在是普遍的,因而普遍知识是较优越的。( 5 )原因越是特殊,它们就越陷于不确定性,而普遍的证明都倾向于简单和确定。不确定的原因是不可知的,而确定的原因则是可知的。因而普遍的事物比特殊的事物更易理解。因为普遍是更加可以论证的。而更加可以论证的事物的证明是更为真实的证明,因为相对性在程度上同时变化,因而普遍证明是更为优越的,因为它是更为真实的证明。( 6 )再者,借助它既可以知道一个给定的事实,也能知道另一个事实的证明优于通过它只能知道那个给定的事实的证明。知道普遍的人也知道特殊,反之,知道特殊的人不知道普遍。据此也可以推出,普遍证明优于特殊证明。( 7 )再看下面的论证,被认为更普遍的事物的证明在于通过一个接近于本原的中词来证明。而最终接近于本原的是直接的前提,即本原自身。如果从本原出发的证明比不从本原出发的证明更为精确,那么较多接近本原的证明就比较少接近它的证明更为精确。普遍证明更具有这种性质,所以它更为优越。例如,假定要求证明 A 属于 D ,中词是 B 和 C , B 是较高的词项,那么借助 B 而作出的证明是更普遍的。 
但是,在以上论证中,有一部分只是辩证的。可以最清楚地见到普遍证明更优越的是在一前一后两个前提中,当我们理解了前者时,在一定意义上对后者也会有某种知识,有某种潜在的了解。例如,如果某人知道每个三角形的内角和等于两直角,那么他在一定意义上也潜在地知道了等腰三角形的内角和等于两直角,即使他并不知道等腰三角形是一个三角形。但理解了后一个前提的人却不知道普遍,无论是潜在的还是现实的。除此而外,普遍的证明是理智的,但特殊的证明却终止于感觉。 
【 25 】 上面的论证充分表明,普遍证明优于特殊证明。而从下面的论证则可以清楚地看到肯定证明优于否定证明。 
( 1 )假如其余条件相同,那么可以断定从较少的假定、假设或前提取来的证明形式优于其他证明形式。设定它们是同样被了解的,当它们其中少数几个的知识可以很快获得时,这种结论是更合人意的。从较少前提得出的证明较为优越的论证可以用普遍形式陈述如下。设定在这两种情况下,中词都同样可知,而且在先的中词比在后的中词更为可知。让我们设定, A 属于 E 的两种证明;一是通过中词 B 、 C 、 D ,二是通过中词 F 、 C 。那么 A 属于 D 的命题与 A 属于 E (在第二种方式下)的命题同样清楚。但是, A 属于 D 的命题却比 A 属于 E (在第一种方式下)的命题在先,并比它知道得更多。因为后者要为前者所证明,而证明的途径要比证明的事物更为确定,所以假定其余条件相同,那么从较少前提导出的证明优于其他证明。肯定证明和否定证明都要用三个词项和两个前提进行,但肯定证明只断定某物是这样,而否定证明既断定某物是这样又断定某物不是这样,因而它要依赖于较多的前提,所以不如肯定证明。 
( 2 )我们已经证明,如果两个前提都是否定的,则三段论不能成立,如果一个前提是否定的,那么另一个前提必定应当是肯定的陈述。除此而外,我们必须掌握下列规则。当证明扩展时,肯定的前提在数目上必须增加,但在任何三段论中否定的前提却不能多于一个。让我们设定没有任何 B 是 A ,一切 C 都是 B ,那么,如果两个前提需要进一步扩展,那就必须在它们之间插入一个中词,让 D 作为 AB 的中词, E 作为 BC 的中词,那么很清楚, E 是肯定的, D 对 B 的关系是肯定的,对 A 的关系却是否定的, D 必定述说所有 B ,但 A 却必定不述说任何 D ,这样就产生了一个否定前提,即 AD 。所有其他三段论都是同样情况。如果在肯定的三段论中,则中词必定同两个端项发生肯定的关系,但在否定的三段论中,中词必定同两个端词中的一个发生否定的关系,因而就产生了一个否定的前提,而其他的前提却是肯定的。如果证明的途径比被证明的事物更为可知,更为确实,否定命题要为肯定证明所证实,但肯定命题却不能为否定证明所证实,那么肯定证明由于是在先的,更为可知,更为确实,所以是更优越的。 
( 3 )再者,如果三段论的本原是普遍的直接前提,如果普遍的前提在肯定的证明中是肯定的,在否定的证明中是否定的,如果肯定前提先于否定前提,并且比它更被了解(因为通过肯定前提,否定前提才被知晓,肯定前提先于否

返回目录 上一页 下一页 回到顶部 1 3

你可能喜欢的