贝壳电子书 > 网络杂集电子书 > 你也能拿高薪 >

第12章

你也能拿高薪-第12章

小说: 你也能拿高薪 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



    如果只问了一轮,第三个人就说出144,那么根据推理,可以很容易得出另外两个是48和96,怎样才能让老师问了两轮才得出答案了?这就需要进一步考虑:    
    A:36(36/252)B:108(108/180)C:144(144/72)    
    括弧内是该同学看到另外两个数后,猜测自己头上可能出现的数。现推理如下:    
    A,B先说不知道,理所当然,C在说不知道的情况下,可以假设如果自己是72的话,B在已知36和72条件下,会这样推理——“我的数应该是36或108,但如果是36的话,C应该可以立刻说出自己的数,而C并没说,所以应该是108!”然而,在下一轮,B还是不知道,所以,C可以判断出自己的假设是假的,自己的数只能是144。    
    猜数字…2    
    老师从1~50之间(大于1小于50)选了两个自然数,将两数之积告诉同学P(Product),两数之和告诉同学S(Sum),问两位同学能否推出这两个自然数?    
    S说:我知道你不知道这两个数,但我也不知道。    
    P说:我还是不知道。    
    S说:我知道这两个数啦!    
    P说:我也知道啦!    
    其他同学:我们也知道啦!    
    ……    
    问:老师选出的两个自然数是什么?    
     分析与解答    
    说话依次编号为S1,P1,S2,P2。    
    设这两个数为x,y,和为s,积为p。    
    由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s29,那么P拿到29´;(s…29)必定可以猜出s了。所以和s为{11,17,23,27,29}之一,设这个集合为A。    
    由P1,乘积p必定含有因子2,而且含有两个质因子,而且最大的质因子不可能大于7,(假如含有因子11,就会有p至少是11´;2´;3,拆成11´;6或者22´;3不满足条件,假如含有因子13,就会有p至少是13´;2´;3,拆成13´;6或者26´;3也不满足条件),这条规则有助于简化和s的拆分。    
    (1)假设s=11。    
    11=2+9=5+6,有18=2´;9=3×6,只有2+9落在集合A中,P不会说出P1。而30=5´;6=2´;15,11和17都落在集合A中,所以只有这一种情况会令P说P1,所以S拿到11可以断言S2。但是问题在于P会说出P2的话,必须要s=17时S说不出S2才行。    
    下面看看s=17的情况,17=2+15=3+14=5+12=7+10= 8+9,由于p=2´;15=5´;6或p=3´;14=2´;21都会令P说出P1,所以s=17时S说不出S2。    
    所以s=11,p=30,这两个数是5和6的时候满足条件    
    (2)假设s=23,    
    23=2+21=3+20=5+18=8+15=9+14,由于p=9´;14=6´;21或p=3´;14=2´;21都会令P说出P1,所以s=23时S说不出S2。    
    (3)假设s=27,    
    27=2+25=3+24=6+21=7+20=9+18=12+15,由于p=6´;21= 9´;14或p=12´;15=9´;20都会令P说出P1,所以s=27时S说不出S2。    
    (4)假设s=29,29=2+27=4+25=5+24=8+21=9+20=14 +15,由于p=9´;20=12´;15或p=5´;24=15´;8都会令P说出P1,所以s=27时S说不出S2。    
    综上所述:这两个数只可能是5和6。    
    数字找规律    
    11,21,33,45,55,61,?    
     分析与解答    
    正确答案:61    
    原则是:    
    1.求下一个数的时候,已知的最后一个数应为10进制的。    
    2.从11开始,按5进制、6进制、7进制……的顺序求下一个数,也就是11的5进制为21,21的6进制为33,33的7进制为45……,55的9进制为61。    
    符号问题    
    定义一种新运算*    
    已知:2*4=8    
    3*5=11    
    5*3=13    
    9*5=25    
    求3*7=?    
     分析与解答    
    3*5和5*3得数差2,所以有两条思路:    
    8…2=6    
    11…3=8    
    13…5=8    
    25…9=16    
    8+4=12    
    11+5=16    
    13+3=16    
    25+5=30    
    然后就从第一条思路凑出来的。a*b=2*(较大数…1)+a,所以3*7=2*(7…1)+3=15。    
    


第2章 数学趣题解析4。 其他趣味数学(1)

    河岸的距离    
    两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?    
     分析与解答    
    当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。    
    变量交换    
    不使用任何其他变量,交换a,b变量的值?    
     分析与解答    
    a = a+b    
    b = a…b    
    a= a…b    
    步行时间    
    某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。    
    有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟……”。    
    温斯顿步行了多长时间?    
     分析与解答    
    假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30…4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。    
    因此,温斯顿步行了26分钟。    
    付清欠款    
    有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?    
     分析与解答    
    贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。    
    贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。    
    一美元纸币    
    注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。    
    一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:    
    (1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。    
    (2)这四人中没有一人能够兑开任何一枚硬币。    
    (3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要付的帐单款额其次,一个叫内德的男士要付的账单款额最小。    
    (4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。    
    (5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。    
    (6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。    
    (7)随着事情的进一步发展,又出现如下的情况:    
    (8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。    
    现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?    
    


第2章 数学趣题解析4。 其他趣味数学(2)

     分析与解答    
    对题意的以下两点这样理解:    
    (2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。    
    (6)中指如果A,B换过,并且A,C换过,这就是两次交换。    
    那么,至少有一组解:是内德用纸币。    
    卢开始有10´;3+25,账单为50    
    莫开始有50,账单为25    
    内德开始有5+25,账单为10    
    店主开始有10    
    此时满足1,2,3,4    
    第一次调换:卢拿10´;3换内德的5+25    
    卢5+25´;2内德10´;3    
    第二次调换:卢拿25´;2换莫的50    
    此时:    
    卢有50+5账单为50付完走人    
    莫有25´;2账单为25付完走人    
    内德有10´;3账单为10付完剩20,要买5分的糖    
    付账后,店主有50+25+10´;2,无法找开10,但硬币和为95,能找开纸币1元。    
    生日会上的12个小孩    
    今天是我13岁的生日。在我的生日宴会上,包括我共有12个小孩相聚在一起。每四个小孩同属一个家庭,共来自A,B和C这三个不同的家庭,当然也包括我所在的家庭。有意思的是,这12个小孩的年龄都不相同,最大的13岁,换句话说,在1至13这十三个数字中,除了某个数字外,其余的

返回目录 上一页 下一页 回到顶部 1 1

你可能喜欢的