±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > the history and practice of the art of photography >

µÚ4ÕÂ

the history and practice of the art of photography-µÚ4ÕÂ

С˵£º the history and practice of the art of photography ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



ed¡¡rays¡¡of¡¡light¡¡to¡¡consist¡¡of¡¡minute¡¡particles¡¡of¡¡matter£»¡¡which¡¡are¡¡constantly¡¡emanating¡¡from¡¡luminous¡¡bodies¡¡and¡¡cause¡¡vision£»¡¡as¡¡odoriferous¡¡particles£»¡¡proceeding¡¡from¡¡certain¡¡bodies£»¡¡cause¡¡smelling¡£

The¡¡effects¡¡of¡¡light¡¡upon¡¡other¡¡bodies£»¡¡and¡¡how¡¡light¡¡is¡¡effected¡¡by¡¡them£»¡¡involve¡¡some¡¡of¡¡the¡¡most¡¡important¡¡principles£»¡¡which¡¡if¡¡properly¡¡understood¡¡by¡¡Daguerreotypists¡¡would¡¡enable¡¡them¡¡to¡¡improve¡¡and¡¡correct¡¡many¡¡of¡¡the¡¡practical¡¡operations¡¡in¡¡their¡¡art¡£¡¡These¡¡effects¡¡we¡¡shall¡¡exhibit¡¡in¡¡this¡¡and¡¡the¡¡following¡¡chapters¡£¡¡Before¡¡we¡¡enter¡¡on¡¡this¡¡subject¡¡it¡¡will¡¡be¡¡necessary¡¡to¡¡become¡¡familiar¡¡with¡¡the

DEFINITIONS¡¡of¡¡some¡¡of¡¡the¡¡terms¡¡used¡¡in¡¡the¡¡science¡¡of¡¡optics¡£

Luminous¡¡bodies¡¡are¡¡of¡¡two¡¡kinds£»¡¡those¡¡which¡¡shine¡¡by¡¡their¡¡own¡¡light£»¡¡and¡¡those¡¡which¡¡shine¡¡by¡¡reflected¡¡light¡£

Transparent¡¡bodies¡¡are¡¡such¡¡as¡¡permit¡¡rays¡¡of¡¡light¡¡to¡¡pass¡¡through¡¡them¡£

Translucent¡¡bodies¡¡permit¡¡light¡¡to¡¡pass¡¡faintly£»¡¡but¡¡without¡¡representing¡¡the¡¡figure¡¡of¡¡objects¡¡seen¡¡through¡¡them¡£

Opaque¡¡bodies¡¡permit¡¡no¡¡light¡¡to¡¡pass¡¡through¡¡them£»¡¡but¡¡reflect¡¡light¡£

A¡¡ray¡¡is¡¡a¡¡line¡¡of¡¡light¡£

A¡¡beam¡¡is¡¡a¡¡collection¡¡of¡¡parallel¡¡rays¡£

A¡¡pencil¡¡is¡¡a¡¡collection¡¡of¡¡converging£»¡¡or¡¡diverging¡¡rays¡£

A¡¡medium¡¡is¡¡any¡¡space¡¡through¡¡which¡¡light¡¡passes¡£

Incident¡¡rays¡¡are¡¡those¡¡which¡¡fall¡¡upon¡¡the¡¡surface¡¡of¡¡a¡¡body¡£

Reflected¡¡rays¡¡are¡¡those¡¡which¡¡are¡¡thrown¡¡off¡¡from¡¡a¡¡body¡£

Parallel¡¡rays¡¡are¡¡such¡¡as¡¡proceed¡¡equally¡¡distant¡¡from¡¡each¡¡other¡¡through¡¡their¡¡whole¡¡course¡£

Converging¡¡rays¡¡are¡¡such¡¡as¡¡approach¡¡and¡¡tend¡¡to¡¡unite¡¡at¡¡any¡¡one¡¡point£»¡¡as¡¡at¡¡b¡£¡¡¡¡fig¡£¡¡¡¡3¡£

Diverging¡¡rays¡¡are¡¡those¡¡which¡¡continue¡¡to¡¡recede¡¡from¡¡each¡¡other£»¡¡as¡¡at¡¡e¡£¡¡¡¡Fig¡£¡¡¡¡3¡£

A¡¡Focus¡¡is¡¡that¡¡point¡¡at¡¡which¡¡converging¡¡rays¡¡meet¡£

MOTION¡¡OF¡¡LIGHTRays¡¡of¡¡light¡¡are¡¡thrown¡¡off¡¡from¡¡luminous¡¡bodies¡¡in¡¡every¡¡direction£»¡¡but¡¡always¡¡in¡¡straight¡¡lines£»¡¡which¡¡cross¡¡each¡¡other¡¡at¡¡every¡¡point£»¡¡but¡¡the¡¡particles¡¡of¡¡which¡¡each¡¡ray¡¡consists¡¡are¡¡so¡¡minute¡¡that¡¡the¡¡rays¡¡do¡¡not¡¡appear¡¡to¡¡be¡¡impeded¡¡by¡¡each¡¡other¡£¡¡A¡¡ray¡¡of¡¡light¡¡passing¡¡through¡¡an¡¡aperture¡¡into¡¡a¡¡dark¡¡room£»¡¡proceeds¡¡in¡¡a¡¡straight¡¡line£»¡¡a¡¡fact¡¡of¡¡which¡¡any¡¡one¡¡may¡¡be¡¡convinced¡¡by¡¡going¡¡into¡¡a¡¡darkened¡¡room¡¡and¡¡admiting¡¡light¡¡only¡¡through¡¡a¡¡small¡¡aperture¡£

Light¡¡also¡¡moves¡¡with¡¡great¡¡velocity£»¡¡but¡¡becomes¡¡fainter¡¡as¡¡it¡¡recedes¡¡from¡¡the¡¡source¡¡from¡¡which¡¡it¡¡eminates£»¡¡in¡¡other¡¡words£»¡¡diverging¡¡rays¡¡of¡¡light¡¡diminish¡¡in¡¡intensity¡¡as¡¡the¡¡square¡¡of¡¡the¡¡distance¡¡increases¡£¡¡For¡¡instance¡¡let¡¡a¡¡fig¡£¡¡¡¡1£»¡¡represent¡¡the¡¡luminous¡¡body¡¡from¡¡¡¡£§hipho_1¡£gif£§¡¡which¡¡light¡¡proceeds£»¡¡and¡¡suppose¡¡three¡¡square¡¡boards£»¡¡b¡£¡¡¡¡c¡£¡¡¡¡d¡£¡¡severally¡¡one£»¡¡four¡¡and¡¡sixteen¡¡square¡¡inches¡¡in¡¡size¡¡be¡¡placed£»¡¡b¡¡one¡¡foot£»¡¡c¡¡two¡¡feet£»¡¡and¡¡d¡¡four¡¡feet¡¡from¡¡a£»¡¡it¡¡will¡¡be¡¡perceived¡¡that¡¡the¡¡smallest¡¡board¡¡b¡¡will¡¡throw¡¡c¡¡into¡¡shadow£»¡¡that¡¡is£»¡¡obstruct¡¡all¡¡rays¡¡of¡¡light¡¡that¡¡would¡¡otherwise¡¡fall¡¡on¡¡c£»¡¡and¡¡if¡¡b¡¡were¡¡removed¡¡c¡¡would¡¡in¡¡like¡¡manner¡¡hide¡¡the¡¡light¡¡from¡¡dNow£»¡¡if¡¡b¡¡recieve¡¡as¡¡much¡¡light¡¡as¡¡would¡¡fall¡¡on¡¡c¡¡whose¡¡surface¡¡is¡¡four¡¡times¡¡as¡¡large£»¡¡the¡¡light¡¡must¡¡be¡¡four¡¡times¡¡as¡¡powerful¡¡and¡¡sixteen¡¡times¡¡as¡¡powerful¡¡as¡¡that¡¡which¡¡would¡¡fall¡¡on¡¡the¡¡second¡¡and¡¡third¡¡boards£»¡¡because¡¡the¡¡same¡¡quantity¡¡of¡¡light¡¡is¡¡diffused¡¡over¡¡a¡¡space¡¡four¡¡and¡¡sixteen¡¡times¡¡greater¡£¡¡These¡¡same¡¡rays¡¡may¡¡be¡¡collected¡¡and¡¡their¡¡intensity¡¡again¡¡increased¡£

Rays¡¡of¡¡light¡¡are¡¡reflected¡¡from¡¡one¡¡surface¡¡to¡¡another£»¡¡Refracted£»¡¡or¡¡bent£»¡¡as¡¡they¡¡pass¡¡from¡¡the¡¡surface¡¡of¡¡one¡¡transparent¡¡medium¡¡to¡¡another£»¡¡and¡¡Inflected£»¡¡or¡¡turned¡¡from¡¡their¡¡course£»¡¡by¡¡the¡¡attraction¡¡of¡¡opaque¡¡bodies¡£¡¡¡¡From¡¡the¡¡first¡¡we¡¡derive¡¡the¡¡principles¡¡on¡¡which¡¡mirrors¡¡are¡¡constructed£»¡¡to¡¡the¡¡second¡¡we¡¡are¡¡indebted¡¡for¡¡the¡¡power¡¡of¡¡the¡¡lenses£»¡¡and¡¡the¡¡blessings¡¡of¡¡sight£»for¡¡the¡¡light¡¡acts¡¡upon¡¡the¡¡retina¡¡of¡¡the¡¡eye¡¡in¡¡the¡¡same¡¡manner¡¡as¡¡on¡¡the¡¡lens¡¡of¡¡a¡¡camera¡£¡¡The¡¡latter¡¡has¡¡no¡¡important¡¡bearing¡¡upon¡¡our¡¡subject¡£

When¡¡a¡¡ray¡¡of¡¡light¡¡falls¡¡perpendicularly¡¡upon¡¡an¡¡opaque¡¡body£»¡¡it¡¡is¡¡reflected¡¡bark¡¡in¡¡the¡¡same¡¡line¡¡in¡¡which¡¡it¡¡proceeds£»¡¡in¡¡this¡¡case¡¡the¡¡reflected¡¡ray¡¡returns¡¡in¡¡the¡¡same¡¡path¡¡the¡¡incident¡¡ray¡¡traversed£»¡¡but¡¡when¡¡a¡¡ray¡¡falls¡¡obliquely£»¡¡it¡¡is¡¡reflected¡¡obliquely£»¡¡that¡¡is£»¡¡it¡¡is¡¡thrown¡¡off¡¡in¡¡opposite¡¡direction£»¡¡and¡¡as¡¡far¡¡from¡¡the¡¡perpendicular¡¡as¡¡was¡¡the¡¡incident¡¡ray£»¡¡as¡¡shown¡¡at¡¡Fig¡£¡¡¡¡2£»¡¡a¡¡representing¡¡the¡¡incident¡¡ray¡¡and¡¡b¡¡the¡¡reflected¡£¡¡The¡¡point£»¡¡or¡¡angle¡¡c¡¡made¡¡by¡¡¡¡£§hipho_2¡£gif£§¡¡the¡¡incident¡¡ray£»¡¡at¡¡the¡¡surface¡¡of¡¡the¡¡reflector¡¡e¡¡f£»¡¡with¡¡a¡¡line¡¡c¡¡d£»¡¡perpendicular¡¡to¡¡that¡¡surface£»¡¡is¡¡called¡¡the¡¡angle¡¡of¡¡incidence£»¡¡while¡¡the¡¡angle¡¡formed¡¡by¡¡the¡¡reflected¡¡ray¡¡b¡¡and¡¡the¡¡perpendicular¡¡line¡¡d¡¡is¡¡called¡¡the¡¡angle¡¡of¡¡reflection£»¡¡and¡¡these¡¡angles¡¡are¡¡always¡¡equal¡£

It¡¡is¡¡by¡¡this¡¡reflection¡¡of¡¡light¡¡that¡¡objects¡¡are¡¡made¡¡visible£»¡¡but¡¡unless¡¡light¡¡falls¡¡directly¡¡upon¡¡the¡¡eye¡¡they¡¡are¡¡invisible£»¡¡and¡¡are¡¡not¡¡sensibly¡¡felt¡¡until¡¡after¡¡a¡¡certain¡¡series¡¡of¡¡operations¡¡upon¡¡the¡¡various¡¡coverings¡¡and¡¡humors¡¡of¡¡the¡¡eye¡£¡¡Smooth¡¡and¡¡polished¡¡surfaces¡¡reflect¡¡light¡¡most¡¡powerfully£»¡¡and¡¡send¡¡to¡¡the¡¡eye¡¡the¡¡images¡¡of¡¡the¡¡objects¡¡from¡¡which¡¡the¡¡light¡¡proceeded¡¡before¡¡reflection¡£¡¡¡¡Glass£»¡¡which¡¡is¡¡transparent¡¡transmitting¡¡lightwould¡¡be¡¡of¡¡no¡¡use¡¡to¡¡us¡¡as¡¡a¡¡mirror£»¡¡were¡¡it¡¡not¡¡first¡¡coated¡¡on¡¡one¡¡side¡¡with¡¡a¡¡metalic¡¡amalgam£»¡¡which¡¡interrupts¡¡the¡¡rays¡¡in¡¡their¡¡passage¡¡from¡¡the¡¡glass¡¡into¡¡the¡¡air£»¡¡and¡¡throws¡¡them¡¡either¡¡directly¡¡in¡¡the¡¡incident¡¡line£»¡¡or¡¡in¡¡an¡¡oblique¡¡direction¡£¡¡¡¡The¡¡reason¡¡why¡¡trees£»¡¡rocks¡¡and¡¡animals¡¡are¡¡not¡¡all¡¡mirrors£»¡¡reflecting¡¡other¡¡forms¡¡instead¡¡of¡¡their¡¡own£»¡¡is£»¡¡that¡¡their¡¡surfaces¡¡are¡¡uneven£»¡¡and¡¡rays¡¡of¡¡light¡¡reflected¡¡from¡¡an¡¡uneven¡¡surface¡¡are¡¡diffused¡¡in¡¡all¡¡directions¡£

Parallel¡¡rays¡¡falling¡¡obliquely¡¡upon¡¡a¡¡plane¡¡mirror¡¡are¡¡reflected¡¡parallel£»¡¡converging¡¡rays£»¡¡with¡¡the¡¡same¡¡degree¡¡of¡¡convergence£»¡¡and¡¡diverging¡¡rays¡¡equally¡¡divergent¡£

Stand¡¡before¡¡a¡¡mirror¡¡and¡¡your¡¡image¡¡is¡¡formed¡¡therein£»¡¡and¡¡appears¡¡to¡¡be¡¡as¡¡far¡¡behind¡¡the¡¡glass¡¡as¡¡you¡¡are¡¡before¡¡it£»¡¡making¡¡the¡¡angle¡¡of¡¡reflection¡¡equal¡¡to¡¡that¡¡of¡¡incidence£»¡¡as¡¡before¡¡stated¡£¡¡¡¡The¡¡incident¡¡ray¡¡and¡¡the¡¡reflected¡¡ray¡¡form£»¡¡together£»¡¡what¡¡is¡¡called¡¡the¡¡passage¡¡of¡¡reflection£»¡¡and¡¡this¡¡will¡¡therefore¡¡make¡¡the¡¡actual¡¡distance¡¡of¡¡an¡¡image¡¡to¡¡appear¡¡as¡¡far¡¡again¡¡from¡¡the¡¡eye¡¡as¡¡it¡¡really¡¡is¡£¡¡Any¡¡object¡¡which¡¡reflects¡¡light¡¡is¡¡called¡¡a¡¡radiant¡£¡¡The¡¡point¡¡behind¡¡a¡¡reflecting¡¡surface£»¡¡from¡¡which¡¡they¡¡appear¡¡to¡¡diverge£»¡¡is¡¡called¡¡the¡¡virtual¡¡focus¡£

Rays¡¡of¡¡light¡¡being¡¡reflected¡¡at¡¡the¡¡same¡¡angle¡¡at¡¡which¡¡they¡¡fall¡¡upon¡¡a¡¡mirror£»¡¡two¡¡persons¡¡can¡¡stand¡¡in¡¡such¡¡a¡¡position¡¡that¡¡each¡¡can¡¡see¡¡the¡¡image¡¡of¡¡the¡¡other¡¡without¡¡seeing¡¡his¡¡own¡£¡¡Again£»¡¡you¡¡may¡¡see¡¡your¡¡whole¡¡figure¡¡in¡¡a¡¡mirror¡¡half¡¡your¡¡length£»¡¡but¡¡if¡¡you¡¡stand¡¡before¡¡one¡¡a¡¡few¡¡inches¡¡shorter¡¡the¡¡whole¡¡cannot¡¡be¡¡reflected£»¡¡as¡¡the¡¡incident¡¡ray¡¡which¡¡passes¡¡from¡¡your¡¡feet¡¡into¡¡the¡¡mirror¡¡in¡¡the¡¡former¡¡case£»¡¡will¡¡in¡¡the¡¡latter¡¡fall¡¡under¡¡it¡£¡¡Images¡¡are¡¡always¡¡reversed¡¡in¡¡mirrors¡£

Convex¡¡mirrors¡¡reflect¡¡light¡¡from¡¡a¡¡rounded¡¡surface¡¡and¡¡disperse¡¡the¡¡rays¡¡in¡¡every¡¡direction£»¡¡causing¡¡parallel¡¡rays¡¡to¡¡diverge£»¡¡diverging¡¡rays¡¡to¡¡diverge¡¡more£»¡¡and¡¡converging¡¡rays¡¡to¡¡converge¡¡less¡¡They¡¡represent¡¡objects¡¡smaller¡¡than¡¡they¡¡really¡¡arebecause¡¡the¡¡angle¡¡formed¡¡by¡¡the¡¡reflected¡¡ray¡¡is¡¡rendered¡¡more¡¡acute¡¡by¡¡a¡¡convex¡¡than¡¡by¡¡a¡¡plane¡¡surface£»¡¡and¡¡it¡¡is¡¡the¡¡diminishing¡¡of¡¡the¡¡visual¡¡angle£»¡¡by¡¡causing¡¡rays¡¡of¡¡light¡¡to¡¡be¡¡farther¡¡extended¡¡before¡¡they¡¡meet¡¡in¡¡a¡¡point£»¡¡which¡¡produces¡¡the¡¡image¡¡of¡¡convex¡¡mirrors¡£¡¡¡¡The¡¡greater¡¡the¡¡convexity¡¡of¡¡a¡¡mirror£»¡¡the¡¡more¡¡will¡¡the¡¡images¡¡of¡¡the¡¡objects¡¡be¡¡diminished£»¡¡and¡¡the¡¡nearer¡¡will¡¡they¡¡appear¡¡to¡¡the¡¡surface¡£¡¡These¡¡mirrors¡¡furnish¡¡science¡¡with¡¡many¡¡curious¡¡and¡¡pleasing¡¡facts¡£

Concave¡¡mirrors¡¡are¡¡the¡¡reverse¡¡of¡¡convex£»¡¡the¡¡latter¡¡being¡¡rounded¡¡outwards£»¡¡the¡¡former¡¡hollowed¡¡inwardsthey¡¡render¡¡rays¡¡of¡¡light¡¡more¡¡converging¡¡collect¡¡rays¡¡instead¡¡of¡¡dispersing¡¡them£»¡¡and¡¡magnify¡¡objects¡¡while¡¡the¡¡convex¡¡diminishes¡¡them¡£

Rays¡¡of¡¡light¡¡may¡¡be¡¡collected¡¡in¡¡the¡¡focus¡¡of¡¡a¡¡mirror¡¡to¡¡such¡¡intensity¡¡as¡¡to¡¡melt¡¡metals¡£¡¡¡¡The¡¡ordinary¡¡burning¡¡glass¡¡is¡¡an¡¡illustration¡¡of¡¡this¡¡fact£»¡¡although¡¡the¡¡rays¡¡of¡¡light¡¡are¡¡refracted£»¡¡or¡¡passed¡¡through¡¡the¡¡glass¡¡and¡¡concentrated¡¡into¡¡a¡¡focus¡¡beneath¡£

When¡¡incident¡¡rays¡¡are¡¡parallel£»¡¡the¡¡reflected¡¡rays¡¡converge¡¡to¡¡a¡¡focus£»¡¡but¡¡when¡¡the¡¡incident¡¡rays¡¡proceed¡¡from¡¡a¡¡focus£»¡¡or¡¡are¡¡divergent£»¡¡they¡¡are¡¡reflected¡¡parallel¡£¡¡¡¡It¡¡is¡¡only¡¡when¡¡an¡¡object¡¡is¡¡nearer¡¡to¡¡a¡¡concave¡¡mirror¡¡than¡¡its¡¡centre¡¡of¡¡concavity£»¡¡that¡¡its¡¡image¡¡is¡¡magnified£»¡¡for¡¡when¡¡the¡¡

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ