±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > the critique of judgement >

µÚ19ÕÂ

the critique of judgement-µÚ19ÕÂ

С˵£º the critique of judgement ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



¡¡perception£»¡¡can¡¡still¡¡compare¡¡them¡¡with¡¡essential¡¡and¡¡universal¡¡ends£»¡¡and¡¡then¡¡further¡¡pronounce¡¡aesthetically¡¡upon¡¡their¡¡accord¡¡with¡¡such¡¡ends£»¡¡only¡¡he£»¡¡among¡¡all¡¡objects¡¡in¡¡the¡¡world£»¡¡admits£»¡¡therefore£»¡¡of¡¡an¡¡ideal¡¡of¡¡beauty£»¡¡just¡¡as¡¡humanity¡¡in¡¡his¡¡person£»¡¡as¡¡intelligence£»¡¡alone¡¡admits¡¡of¡¡the¡¡ideal¡¡of¡¡perfection¡£¡¡¡¡¡¡Two¡¡factors¡¡are¡¡here¡¡involved¡£¡¡First£»¡¡there¡¡is¡¡the¡¡aesthetic¡¡normal¡¡idea£»¡¡which¡¡is¡¡an¡¡individual¡¡intuition¡¡£¨of¡¡the¡¡imagination£©¡£¡¡This¡¡represents¡¡the¡¡norm¡¡by¡¡which¡¡we¡¡judge¡¡of¡¡a¡¡man¡¡as¡¡a¡¡member¡¡of¡¡a¡¡particular¡¡animal¡¡species¡£¡¡Secondly£»¡¡there¡¡is¡¡the¡¡rational¡¡idea¡£¡¡This¡¡deals¡¡with¡¡the¡¡ends¡¡of¡¡humanity¡¡so¡¡far¡¡as¡¡capable¡¡of¡¡sensuous¡¡representation£»¡¡and¡¡converts¡¡them¡¡into¡¡a¡¡principle¡¡for¡¡estimating¡¡his¡¡outward¡¡form£»¡¡through¡¡which¡¡these¡¡ends¡¡are¡¡revealed¡¡in¡¡their¡¡phenomenal¡¡effect¡£¡¡The¡¡normal¡¡idea¡¡must¡¡draw¡¡from¡¡experience¡¡the¡¡constituents¡¡which¡¡it¡¡requires¡¡for¡¡the¡¡form¡¡of¡¡an¡¡animal¡¡of¡¡a¡¡particular¡¡kind¡£¡¡But¡¡the¡¡greatest¡¡finality¡¡in¡¡the¡¡construction¡¡of¡¡this¡¡form¡­that¡¡which¡¡would¡¡serve¡¡as¡¡a¡¡universal¡¡norm¡¡for¡¡forming¡¡an¡¡estimate¡¡of¡¡each¡¡individual¡¡of¡¡the¡¡species¡¡in¡¡question¡­the¡¡image¡¡that£»¡¡as¡¡it¡¡were£»¡¡forms¡¡an¡¡intentional¡¡basis¡¡underlying¡¡the¡¡technic¡¡of¡¡nature£»¡¡to¡¡which¡¡no¡¡separate¡¡individual£»¡¡but¡¡only¡¡the¡¡race¡¡as¡¡a¡¡whole£»¡¡is¡¡adequate£»¡¡has¡¡its¡¡seat¡¡merely¡¡in¡¡the¡¡idea¡¡of¡¡the¡¡judging¡¡subject¡£¡¡Yet¡¡it¡¡is£»¡¡with¡¡all¡¡its¡¡proportions£»¡¡an¡¡aesthetic¡¡idea£»¡¡and£»¡¡as¡¡such£»¡¡capable¡¡of¡¡being¡¡fully¡¡presented¡¡in¡¡concreto¡¡in¡¡a¡¡model¡¡image¡£¡¡Now£»¡¡how¡¡is¡¡this¡¡effected£¿¡¡In¡¡order¡¡to¡¡render¡¡the¡¡process¡¡to¡¡some¡¡extent¡¡intelligible¡¡£¨for¡¡who¡¡can¡¡wrest¡¡nature's¡¡whole¡¡secret¡¡from¡¡her£¿£©£»¡¡let¡¡us¡¡attempt¡¡a¡¡psychological¡¡explanation¡£¡¡¡¡¡¡It¡¡is¡¡of¡¡note¡¡that¡¡the¡¡imagination£»¡¡in¡¡a¡¡manner¡¡quite¡¡incomprehensible¡¡to¡¡us£»¡¡is¡¡able¡¡on¡¡occasion£»¡¡even¡¡after¡¡a¡¡long¡¡lapse¡¡of¡¡time£»¡¡not¡¡alone¡¡to¡¡recall¡¡the¡¡signs¡¡for¡¡concepts£»¡¡but¡¡also¡¡to¡¡reproduce¡¡the¡¡image¡¡and¡¡shape¡¡of¡¡an¡¡object¡¡out¡¡of¡¡a¡¡countless¡¡number¡¡of¡¡others¡¡of¡¡a¡¡different£»¡¡or¡¡even¡¡of¡¡the¡¡very¡¡same£»¡¡kind¡£¡¡And£»¡¡further£»¡¡if¡¡the¡¡mind¡¡is¡¡engaged¡¡upon¡¡comparisons£»¡¡we¡¡may¡¡well¡¡suppose¡¡that¡¡it¡¡can¡¡in¡¡actual¡¡fact£»¡¡though¡¡the¡¡process¡¡is¡¡unconscious£»¡¡superimpose¡¡as¡¡it¡¡were¡¡one¡¡image¡¡upon¡¡another£»¡¡and¡¡from¡¡the¡¡coincidence¡¡of¡¡a¡¡number¡¡of¡¡the¡¡same¡¡kind¡¡arrive¡¡at¡¡a¡¡mean¡¡contour¡¡which¡¡serves¡¡as¡¡a¡¡common¡¡standard¡¡for¡¡all¡£¡¡Say£»¡¡for¡¡instance£»¡¡a¡¡person¡¡has¡¡seen¡¡a¡¡thousand¡¡full¡­grown¡¡men¡£¡¡Now¡¡if¡¡he¡¡wishes¡¡to¡¡judge¡¡normal¡¡size¡¡determined¡¡upon¡¡a¡¡comparative¡¡estimate£»¡¡then¡¡imagination¡¡£¨to¡¡my¡¡mind£©¡¡allows¡¡a¡¡great¡¡number¡¡of¡¡these¡¡images¡¡£¨perhaps¡¡the¡¡whole¡¡thousand£©¡¡to¡¡fall¡¡one¡¡upon¡¡the¡¡other£»¡¡and£»¡¡if¡¡I¡¡may¡¡be¡¡allowed¡¡to¡¡extend¡¡to¡¡the¡¡case¡¡the¡¡analogy¡¡of¡¡optical¡¡presentation£»¡¡in¡¡the¡¡space¡¡where¡¡they¡¡come¡¡most¡¡together£»¡¡and¡¡within¡¡the¡¡contour¡¡where¡¡the¡¡place¡¡is¡¡illuminated¡¡by¡¡the¡¡greatest¡¡concentration¡¡of¡¡colour£»¡¡one¡¡gets¡¡a¡¡perception¡¡of¡¡the¡¡average¡¡size£»¡¡which¡¡alike¡¡in¡¡height¡¡and¡¡breadth¡¡is¡¡equally¡¡removed¡¡from¡¡the¡¡extreme¡¡limits¡¡of¡¡the¡¡greatest¡¡and¡¡smallest¡¡statures£»¡¡and¡¡this¡¡is¡¡the¡¡stature¡¡of¡¡a¡¡beautiful¡¡man¡£¡¡£¨The¡¡same¡¡result¡¡could¡¡be¡¡obtained¡¡in¡¡a¡¡mechanical¡¡way£»¡¡by¡¡taking¡¡the¡¡measures¡¡of¡¡all¡¡the¡¡thousand£»¡¡and¡¡adding¡¡together¡¡their¡¡heights£»¡¡and¡¡their¡¡breadths¡¡£§and¡¡thicknesses£§£»¡¡and¡¡dividing¡¡the¡¡sum¡¡in¡¡each¡¡case¡¡by¡¡a¡¡thousand¡££©¡¡But¡¡the¡¡power¡¡of¡¡imagination¡¡does¡¡all¡¡this¡¡by¡¡means¡¡of¡¡a¡¡dynamical¡¡effect¡¡upon¡¡the¡¡organ¡¡of¡¡internal¡¡sense£»¡¡arising¡¡from¡¡the¡¡frequent¡¡apprehension¡¡of¡¡such¡¡forms¡£¡¡If£»¡¡again£»¡¡for¡¡our¡¡average¡¡man¡¡we¡¡seek¡¡on¡¡similar¡¡lines¡¡for¡¡the¡¡average¡¡head£»¡¡and¡¡for¡¡this¡¡the¡¡average¡¡nose£»¡¡and¡¡so¡¡on£»¡¡then¡¡we¡¡get¡¡the¡¡figure¡¡that¡¡underlies¡¡the¡¡normal¡¡idea¡¡of¡¡a¡¡beautiful¡¡man¡¡in¡¡the¡¡country¡¡where¡¡the¡¡comparison¡¡is¡¡instituted¡£¡¡For¡¡this¡¡reason¡¡a¡¡Negro¡¡must¡¡necessarily¡¡£¨under¡¡these¡¡empirical¡¡conditions£©¡¡have¡¡a¡¡different¡¡normal¡¡idea¡¡of¡¡the¡¡beauty¡¡of¡¡forms¡¡from¡¡what¡¡a¡¡white¡¡man¡¡has£»¡¡and¡¡the¡¡Chinaman¡¡one¡¡different¡¡from¡¡the¡¡European¡£¡¡And¡¡the¡£¡¡process¡¡would¡¡be¡¡just¡¡the¡¡same¡¡with¡¡the¡¡model¡¡of¡¡a¡¡beautiful¡¡horse¡¡or¡¡dog¡¡£¨of¡¡a¡¡particular¡¡breed£©¡£¡¡This¡¡normal¡¡idea¡¡is¡¡not¡¡derived¡¡from¡¡proportions¡¡taken¡¡from¡¡experience¡¡as¡¡definite¡¡rules£º¡¡rather¡¡is¡¡it¡¡according¡¡to¡¡this¡¡idea¡¡that¡¡rules¡¡forming¡¡estimates¡¡first¡¡become¡¡possible¡£¡¡It¡¡is¡¡an¡¡intermediate¡¡between¡¡all¡¡singular¡¡intuitions¡¡of¡¡individuals£»¡¡with¡¡their¡¡manifold¡¡variations¡­a¡¡floating¡¡image¡¡for¡¡the¡¡whole¡¡genus£»¡¡which¡¡nature¡¡has¡¡set¡¡as¡¡an¡¡archetype¡¡underlying¡¡those¡¡of¡¡her¡¡products¡¡that¡¡belong¡¡to¡¡the¡¡same¡¡species£»¡¡but¡¡which¡¡in¡¡no¡¡single¡¡case¡¡she¡¡seems¡¡to¡¡have¡¡completely¡¡attained¡£¡¡But¡¡the¡¡normal¡¡idea¡¡is¡¡far¡¡from¡¡giving¡¡the¡¡complete¡¡archetype¡¡of¡¡beauty¡¡in¡¡the¡¡genus¡£¡¡It¡¡only¡¡gives¡¡the¡¡form¡¡that¡¡constitutes¡¡the¡¡indispensable¡¡condition¡¡of¡¡all¡¡beauty£»¡¡and£»¡¡consequently£»¡¡only¡¡correctness¡¡in¡¡the¡¡presentation¡¡of¡¡the¡¡genus¡£¡¡It¡¡is£»¡¡as¡¡the¡¡famous¡¡¡¨Doryphorus¡¨¡¡of¡¡Polycletus¡¡was¡¡called£»¡¡the¡¡rule¡¡£¨and¡¡Myron's¡¡¡¨Cow¡¨¡¡might¡¡be¡¡similarly¡¡employed¡¡for¡¡its¡¡kind£©¡£¡¡It¡¡cannot£»¡¡for¡¡that¡¡very¡¡reason£»¡¡contain¡¡anything¡¡specifically¡¡characteristic£»¡¡for¡¡otherwise¡¡it¡¡would¡¡not¡¡be¡¡the¡¡normal¡¡idea¡¡for¡¡the¡¡genus¡£¡¡Further£»¡¡it¡¡is¡¡not¡¡by¡¡beauty¡¡that¡¡its¡¡presentation¡¡pleases£»¡¡but¡¡merely¡¡because¡¡it¡¡does¡¡not¡¡contradict¡¡any¡¡of¡¡the¡¡conditions¡¡under¡¡which¡¡alone¡¡a¡¡thing¡¡belonging¡¡to¡¡this¡¡genus¡¡can¡¡be¡¡beautiful¡£¡¡The¡¡presentation¡¡is¡¡merely¡¡academically¡¡correct¡£*

¡¡¡¡*It¡¡will¡¡be¡¡found¡¡that¡¡a¡¡perfectly¡¡regular¡¡face¡¡one¡¡that¡¡a¡¡painter¡¡might¡¡fix¡¡his¡¡eye¡¡on¡¡for¡¡a¡¡model¡­ordinarily¡¡conveys¡¡nothing¡£¡¡This¡¡is¡¡because¡¡it¡¡is¡¡devoid¡¡of¡¡anything¡¡characteristic£»¡¡and¡¡so¡¡the¡¡idea¡¡of¡¡the¡¡race¡¡is¡¡expressed¡¡in¡¡it¡¡rather¡¡than¡¡the¡¡specific¡¡qualities¡¡of¡¡a¡¡person¡£¡¡The¡¡exaggeration¡¡of¡¡what¡¡is¡¡characteristic¡¡in¡¡this¡¡way£»¡¡i¡£e¡££»¡¡exaggeration¡¡violating¡¡the¡¡normal¡¡idea¡¡£¨the¡¡finality¡¡of¡¡the¡¡race£©£»¡¡is¡¡called¡¡caricature¡£¡¡Also¡¡experience¡¡shows¡¡that¡¡these¡¡quite¡¡regular¡¡faces¡¡indicate¡¡as¡¡a¡¡rule¡¡internally¡¡only¡¡a¡¡mediocre¡¡type¡¡of¡¡man£»¡¡presumably¡­if¡¡one¡¡may¡¡assume¡¡that¡¡nature¡¡in¡¡its¡¡external¡¡form¡¡expresses¡¡the¡¡proportions¡¡of¡¡the¡¡internal¡¡¡­because£»¡¡where¡¡none¡¡of¡¡the¡¡mental¡¡qualities¡¡exceed¡¡the¡¡proportion¡¡requisite¡¡to¡¡constitute¡¡a¡¡man¡¡free¡¡from¡¡faults£»¡¡nothing¡¡can¡¡be¡¡expected¡¡in¡¡the¡¡way¡¡of¡¡what¡¡is¡¡called¡¡genius£»¡¡in¡¡which¡¡nature¡¡seems¡¡to¡¡make¡¡a¡¡departure¡¡from¡¡its¡¡wonted¡¡relations¡¡of¡¡the¡¡mental¡¡powers¡¡in¡¡favour¡¡of¡¡some¡¡special¡¡one¡£

¡¡¡¡But¡¡the¡¡ideal¡¡of¡¡the¡¡beautiful¡¡is¡¡still¡¡something¡¡different¡¡from¡¡its¡¡normal¡¡idea¡£¡¡For¡¡reasons¡¡already¡¡stated¡¡it¡¡is¡¡only¡¡to¡¡be¡¡sought¡¡in¡¡the¡¡human¡¡figure¡£¡¡Here¡¡the¡¡ideal¡¡consists¡¡in¡¡the¡¡expression¡¡of¡¡the¡¡moral£»¡¡apart¡¡from¡¡which¡¡the¡¡object¡¡would¡¡not¡¡please¡¡at¡¡once¡¡universally¡¡and¡¡positively¡¡£¨not¡¡merely¡¡negatively¡¡in¡¡a¡¡presentation¡¡academically¡¡correct£©¡£¡¡The¡¡visible¡¡expression¡¡of¡¡moral¡¡ideas¡¡that¡¡govern¡¡men¡¡inwardly¡¡can£»¡¡of¡¡course£»¡¡only¡¡be¡¡drawn¡¡from¡¡experience£»¡¡but¡¡their¡¡combination¡¡with¡¡all¡¡that¡¡our¡¡reason¡¡connects¡¡with¡¡the¡¡morally¡¡good¡¡in¡¡the¡¡idea¡¡of¡¡the¡¡highest¡¡finality¡­benevolence£»¡¡purity£»¡¡strength£»¡¡or¡¡equanimity£»¡¡etc¡£¡­may¡¡be¡¡made£»¡¡as¡¡it¡¡were£»¡¡visible¡¡in¡¡bodily¡¡manifestation¡¡£¨as¡¡effect¡¡of¡¡what¡¡is¡¡internal£©£»¡¡and¡¡this¡¡embodiment¡¡involves¡¡a¡¡union¡¡of¡¡pure¡¡ideas¡¡of¡¡reason¡¡and¡¡great¡¡imaginative¡¡power£»¡¡in¡¡one¡¡who¡¡would¡¡even¡¡form¡¡an¡¡estimate¡¡of¡¡it£»¡¡not¡¡to¡¡speak¡¡of¡¡being¡¡the¡¡author¡¡of¡¡its¡¡presentation¡£¡¡The¡¡correctness¡¡of¡¡such¡¡an¡¡ideal¡¡of¡¡beauty¡¡is¡¡evidenced¡¡by¡¡its¡¡not¡¡permitting¡¡any¡¡sensuous¡¡charm¡¡to¡¡mingle¡¡with¡¡the¡¡delight¡¡in¡¡its¡¡object£»¡¡in¡¡which¡¡it¡¡still¡¡allows¡¡us¡¡to¡¡take¡¡a¡¡great¡¡interest¡£¡¡This¡¡fact¡¡in¡¡turn¡¡shows¡¡that¡¡an¡¡estimate¡¡formed¡¡according¡¡to¡¡such¡¡a¡¡standard¡¡can¡¡never¡¡be¡¡purely¡¡aesthetic£»¡¡and¡¡that¡¡one¡¡formed¡¡according¡¡to¡¡an¡¡ideal¡¡of¡¡beauty¡¡cannot¡¡be¡¡a¡¡simple¡¡judgement¡¡of¡¡taste¡£

¡¡¡¡¡¡¡¡Definition¡¡of¡¡the¡¡Beautiful¡¡Derived¡¡from¡¡this¡¡Third¡¡Moment¡£

¡¡¡¡Beauty¡¡is¡¡the¡¡form¡¡of¡¡finality¡¡in¡¡an¡¡object£»¡¡so¡¡far¡¡as¡¡perceived¡¡in¡¡it¡¡apart¡¡from¡¡the¡¡representation¡¡of¡¡an¡¡end¡£*

¡¡¡¡*As¡¡telling¡¡against¡¡this¡¡explanation£»¡¡the¡¡instance¡¡may¡¡be¡¡adduced¡¡that¡¡there¡¡are¡¡things¡¡in¡¡which¡¡we¡¡see¡¡a¡¡form¡¡suggesting¡¡adaptation¡¡to¡¡an¡¡end£»¡¡without¡¡any¡¡end¡¡being¡¡cognized¡¡in¡¡them¡­as£»¡¡for¡¡example£»¡¡the¡¡stone¡¡implements¡¡frequently¡¡obtained¡¡from¡¡sepulchral¡¡tumuli¡¡and¡¡supplied¡¡with¡¡a¡¡hole£»¡¡as¡¡if¡¡for¡¡£§inserting£§¡¡a¡¡handle£»¡¡and¡¡although¡¡these¡¡by¡¡their¡¡shape¡¡manifestly¡¡indicate¡¡a¡¡finality£»¡¡the¡¡end¡¡of¡¡which¡¡is¡¡unknown£»¡¡they¡¡are¡¡not¡¡on¡¡that¡¡account¡¡described¡¡as¡¡beautiful¡£¡¡But¡¡the¡¡very¡¡fact¡¡of¡¡their¡¡being¡¡regarded¡¡as¡¡art¡­products¡¡involves¡¡an¡¡immediate¡¡recognition¡¡that¡¡their¡¡shape¡¡is¡¡attributed¡¡to¡¡some¡¡purpose¡¡or¡¡other¡¡and¡¡to¡¡a¡¡definite¡¡end¡£¡¡For¡¡this¡¡reason¡¡there¡¡is¡¡no¡¡immediate¡¡delight¡¡whatever¡¡in¡¡their¡¡contemplat

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ