±´¿Çµç×ÓÊé > Ó¢ÎÄÔ­Öøµç×ÓÊé > shorter logic >

µÚ45ÕÂ

shorter logic-µÚ45ÕÂ

С˵£º shorter logic ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



suffer¡¡some¡¡change¡¡in¡¡its¡¡characteristics¡¡£¨as¡¡an¡¡alkali£»¡¡when¡¡combined¡¡with¡¡an
acid£»¡¡loses¡¡some¡¡of¡¡its¡¡properties£©£»¡¡we¡¡must¡¡see¡¡that¡¡the¡¡same¡¡fate¡¡awaits¡¡the
infinite£»¡¡which£»¡¡as¡¡the¡¡negative£»¡¡will¡¡on¡¡its¡¡part¡¡likewise¡¡have¡¡its¡¡edge£»¡¡as¡¡it¡¡were£»
taken¡¡off¡¡on¡¡the¡¡other¡£¡¡And¡¡this¡¡does¡¡really¡¡happen¡¡with¡¡the¡¡abstract¡¡one¡­sided
infinite¡¡of¡¡understanding¡£¡¡The¡¡genuine¡¡infinite¡¡however¡¡is¡¡not¡¡merely¡¡in¡¡the
position¡¡of¡¡the¡¡one¡­sided¡¡acid£»¡¡and¡¡so¡¡does¡¡not¡¡lose¡¡itself¡£¡¡The¡¡negation¡¡of
negation¡¡is¡¡not¡¡a¡¡neutralisation£º¡¡the¡¡infinite¡¡is¡¡the¡¡affirmative£»¡¡and¡¡it¡¡is¡¡only¡¡the
finite¡¡which¡¡is¡¡absorbed¡£¡¡

In¡¡Being¡­for¡­self¡¡enters¡¡the¡¡category¡¡of¡¡Ideality¡£¡¡Being¡­there¡­and¡­then£»¡¡as¡¡in¡¡the
first¡¡instance¡¡apprehended¡¡in¡¡its¡¡being¡¡or¡¡affirmation£»¡¡has¡¡reality¡¡£¨¡ì¡¡91£©£»¡¡and¡¡thus
even¡¡finitude¡¡in¡¡the¡¡first¡¡instance¡¡is¡¡in¡¡the¡¡category¡¡of¡¡reality¡£¡¡But¡¡the¡¡truth¡¡of¡¡the
finite¡¡is¡¡rather¡¡its¡¡ideality¡£¡¡Similarly£»¡¡the¡¡infinite¡¡of¡¡understanding£»¡¡which¡¡is
coordinated¡¡with¡¡the¡¡finite£»¡¡is¡¡itself¡¡only¡¡one¡¡of¡¡two¡¡finites£»¡¡no¡¡whole¡¡truth£»¡¡but¡¡a
non¡­substantial¡¡element¡£¡¡This¡¡ideality¡¡of¡¡the¡¡finite¡¡is¡¡the¡¡chief¡¡maxim¡¡of
philosophy£»¡¡and¡¡for¡¡that¡¡reason¡¡every¡¡genuine¡¡philosophy¡¡is¡¡idealism¡£¡¡But
everything¡¡depends¡¡upon¡¡not¡¡taking¡¡for¡¡the¡¡infinite¡¡what£»¡¡in¡¡the¡¡very¡¡terms¡¡of¡¡its
characterisation£»¡¡is¡¡at¡¡the¡¡same¡¡time¡¡made¡¡a¡¡particular¡¡and¡¡finite¡£¡¡For¡¡this£»¡¡reason
we¡¡have¡¡bestowed¡¡a¡¡greater¡¡amount¡¡of¡¡attention¡¡on¡¡this¡£¡¡distinction¡£¡¡The
fundamental¡¡notion¡¡of¡¡philosophy£»¡¡the¡¡genuine¡¡infinite£»¡¡depends¡¡upon¡¡it¡£¡¡The
distinction¡¡is¡¡cleared¡¡up¡¡by¡¡the¡¡simple£»¡¡and¡¡for¡¡that¡¡reason¡¡seemingly¡¡insignificant£»
but¡¡incontrovertible¡¡reflections¡¡contained¡¡in¡¡the¡¡first¡¡paragraph¡¡of¡¡this¡¡section¡£¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨c£©¡¡Being¡­for¡­self
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡96

Being¡­for¡­self£»¡¡as¡¡reference¡¡to¡¡itself£»¡¡is¡¡immediacy£»¡¡and¡¡as¡¡reference¡¡of¡¡the
negative¡¡to¡¡itself£»¡¡is¡¡a¡¡self¡­subsistent£»¡¡the¡¡One¡£¡¡This¡¡unit£»¡¡being¡¡without¡¡distinction
in¡¡itself£»¡¡thus¡¡excludes¡¡the¡¡other¡¡from¡¡itself¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡96n
To¡¡be¡¡for¡¡self¡¡¡­¡¡to¡¡be¡¡one¡¡¡­¡¡is¡¡completed¡¡Quality£»¡¡and¡¡as¡¡such£»¡¡contains¡¡abstract¡¡Being¡¡and¡¡Being
modified¡¡a¡¡non¡­substantial¡¡elements¡£¡¡As¡¡simple¡¡Being£»¡¡the¡¡One¡¡is¡¡simple¡¡self¡­reference£»¡¡as¡¡Being
modified¡¡it¡¡is¡¡determinate£º¡¡but¡¡the¡¡determinateness¡¡is¡¡not¡¡in¡¡this¡¡case¡¡a¡¡finite¡¡determinateness¡¡¡­¡¡a
somewhat¡¡in¡¡distinction¡¡from¡¡an¡¡other¡¡¡­¡¡but¡¡infinite£»¡¡because¡¡it¡¡contains¡¡distinction¡¡absorbed¡¡and
annulled¡¡in¡¡itself¡£¡¡

The¡¡readiest¡¡instance¡¡of¡¡Being¡­for¡­self¡¡is¡¡found¡¡in¡¡the¡¡'I'¡£¡¡We¡¡know¡¡ourselves¡¡as¡¡existents£»
distinguished¡¡in¡¡the¡¡first¡¡place¡¡from¡¡other¡¡existents£»¡¡and¡¡with¡¡certain¡¡relations¡¡thereto¡£¡¡But¡¡we¡¡also
come¡¡to¡¡know¡¡this¡¡expansion¡¡of¡¡existence¡¡£¨in¡¡these¡¡relations£©¡¡reduced£»¡¡as¡¡it¡¡were£»¡¡to¡¡a¡¡point¡¡in¡¡the
simple¡¡form¡¡of¡¡being¡­for¡­self¡£¡¡When¡¡we¡¡say¡¡'I'£»¡¡we¡¡express¡¡this¡¡reference¡­to¡­self¡¡which¡¡is¡¡infinite£»
and¡¡at¡¡the¡¡same¡¡time¡¡negative¡£¡¡Man£»¡¡it¡¡may¡¡be¡¡said£»¡¡is¡¡distinguished¡¡from¡¡the¡¡animal¡¡world£»¡¡and¡¡in
that¡¡way¡¡from¡¡our¡¡nature¡¡altogether£»¡¡by¡¡knowing¡¡himself¡¡as¡¡'I'£º¡¡which¡¡amounts¡¡to¡¡saying¡¡that¡¡natural
things¡¡never¡¡attain¡¡free¡¡Being¡­for¡­self£»¡¡but¡¡as¡¡limited¡¡to¡¡Being¡­there¡­and¡­then£»¡¡are¡¡always¡¡and¡¡only
Being¡¡for¡¡another¡£¡¡

Again£»¡¡Being¡­for¡­self¡¡may¡¡be¡¡described¡¡as¡¡ideality£»¡¡just¡¡as¡¡Being¡­there¡­and¡­then¡¡was¡¡described¡¡as
reality¡£¡¡It¡¡is¡¡said¡¡that¡¡besides¡¡reality¡¡there¡¡is¡¡also¡¡an¡¡ideality¡£¡¡Thus¡¡the¡¡two¡¡categories¡¡are¡¡made
equal¡¡and¡¡parallel¡£¡¡Properly¡¡speaking£»¡¡ideality¡¡is¡¡not¡¡somewhat¡¡outside¡¡of¡¡and¡¡beside¡¡reality£º¡¡the
notion¡¡of¡¡ideality¡¡just¡¡lies¡¡in¡¡its¡¡being¡¡the¡¡truth¡¡of¡¡reality¡£¡¡That¡¡is¡¡to¡¡say£»¡¡when¡¡reality¡¡is¡¡explicitly¡¡put
as¡¡what¡¡it¡¡implicitly¡¡is£»¡¡it¡¡is¡¡at¡¡once¡¡seen¡¡to¡¡be¡¡ideality¡£¡¡Hence¡¡ideality¡¡has¡¡not¡¡received¡¡its¡¡proper
estimation£»¡¡when¡¡you¡¡allow¡¡that¡¡reality¡¡is¡¡not¡¡all¡¡in¡¡all£»¡¡but¡¡that¡¡an¡¡ideality¡¡must¡¡be¡¡recognised
outside¡¡of¡¡it¡£¡¡Such¡¡an¡¡ideality£»¡¡external¡¡to¡¡or¡¡it¡¡may¡¡even¡¡be¡¡beyond¡¡reality£»¡¡would¡¡be¡¡no¡¡better
than¡¡an¡¡empty¡¡name¡£¡¡Ideality¡¡only¡¡has¡¡a¡¡meaning¡¡when¡¡it¡¡is¡¡the¡¡ideality¡¡of¡¡something£º¡¡but¡¡this
something¡¡is¡¡not¡¡a¡¡mere¡¡indefinite¡¡this¡¡or¡¡that£»¡¡but¡¡existence¡¡characterised¡¡as¡¡reality£»¡¡which£»¡¡if
retained¡¡in¡¡isolation£»¡¡possesses¡¡no¡¡truth¡£¡¡The¡¡distinction¡¡between¡¡Nature¡¡and¡¡Mind¡¡is¡¡not
improperly¡¡conceived£»¡¡when¡¡the¡¡former¡¡is¡¡traced¡¡back¡¡to¡¡reality£»¡¡and¡¡the¡¡latter¡¡so¡¡fixed¡¡and
complete¡¡as¡¡to¡¡subsist¡¡even¡¡without¡¡Mind£º¡¡in¡¡Mind¡¡it¡¡first£»¡¡as¡¡it¡¡were£»¡¡attains¡¡its¡¡goal¡¡and¡¡its¡¡truth¡£
And¡¡similarly£»¡¡Mind¡¡on¡¡its¡¡part¡¡is¡¡not¡¡merely¡¡a¡¡world¡¡beyond¡¡Nature¡¡and¡¡nothing¡¡more£º¡¡it¡¡is¡¡really£»
and¡¡with¡¡full¡¡proof£»¡¡seen¡¡to¡¡be¡¡mind£»¡¡only¡¡when¡¡it¡¡involves¡¡Nature¡¡as¡¡absorbed¡¡in¡¡itself¡£¡¡Apropos
of¡¡this£»¡¡we¡¡should¡¡note¡¡the¡¡double¡¡meaning¡¡of¡¡the¡¡German¡¡word¡¡aufheben¡¡£¨to¡¡put¡¡by¡¡or¡¡set¡¡aside£©¡£
We¡¡mean¡¡by¡¡it¡¡£¨1£©¡¡to¡¡clear¡¡away£»¡¡or¡¡annul£º¡¡thus£»¡¡we¡¡say£»¡¡a¡¡law¡¡or¡¡regulation¡¡is¡¡set¡¡aside£»¡¡£¨2£©¡¡to
keep£»¡¡or¡¡preserve£º¡¡in¡¡which¡¡sense¡¡we¡¡use¡¡it¡¡when¡¡we¡¡say£º¡¡something¡¡is¡¡well¡¡put¡¡by¡£¡¡This¡¡double
usage¡¡of¡¡language£»¡¡which¡¡gives¡¡to¡¡the¡¡same¡¡word¡¡a¡¡positive¡¡and¡¡negative¡¡meaning£»¡¡is¡¡not¡¡an
accident£»¡¡and¡¡gives¡¡no¡¡ground¡¡for¡¡reproaching¡¡language¡¡as¡¡a¡¡cause¡¡of¡¡confusion¡£¡¡We¡¡should¡¡rather
recognise¡¡in¡¡it¡¡the¡¡speculative¡¡spirit¡¡of¡¡our¡¡language¡¡rising¡¡above¡¡the¡¡me¡¡'either¡­or'¡¡of
understanding¡£¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì97

£§b£§¡¡The¡¡relation¡¡of¡¡the¡¡negative¡¡to¡¡itself¡¡is¡¡a¡¡negative¡¡relation£»¡¡and¡¡so¡¡a
distinguishing¡¡of¡¡the¡¡One¡¡from¡¡itself£»¡¡the¡¡repulsion¡¡of¡¡the¡¡One£»¡¡that¡¡is£»¡¡it¡¡makes
Many¡¡Ones¡£¡¡So¡¡far¡¡as¡¡regards¡¡the¡¡immediacy¡¡of¡¡the¡¡self¡­existents£»¡¡these¡¡Many
are£º¡¡and¡¡the¡¡repulsion¡¡of¡¡every¡¡One¡¡of¡¡them¡¡becomes¡¡to¡¡that¡¡extent¡¡their
repulsion¡¡against¡¡each¡¡other¡¡as¡¡existing¡¡units¡¡¡­¡¡in¡¡other¡¡words£»¡¡their¡¡reciprocal
exclusion¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì97n

Whenever¡¡we¡¡speak¡¡of¡¡the¡¡One£»¡¡the¡¡Many¡¡usually¡¡come¡¡into¡¡our¡¡mind¡¡at¡¡the¡¡same¡¡time¡£¡¡Whence£»
then£»¡¡we¡¡are¡¡forced¡¡to¡¡ask£»¡¡do¡¡the¡¡Many¡¡come£¿¡¡This¡¡question¡¡is¡¡unanswerable¡¡by¡¡the
consciousness¡¡which¡¡pictures¡¡the¡¡Many¡¡as¡¡a¡¡primary¡¡datum£»¡¡and¡¡treats¡¡the¡¡One¡¡as¡¡only¡¡one¡¡among
the¡¡Many¡£¡¡But¡¡the¡¡philosophic¡¡notion¡¡teaches£»¡¡contrariwise£»¡¡that¡¡the¡¡One¡¡forms¡¡the¡¡presupposition
of¡¡the¡¡Many£º¡¡and¡¡in¡¡the¡¡thought¡¡of¡¡the¡¡One¡¡is¡¡implied¡¡that¡¡it¡¡explicitly¡¡make¡¡itself¡¡Many¡£¡¡¡£¡£¡£¡¡
£¿

The¡¡One£»¡¡as¡¡already¡¡remarked£»¡¡just¡¡is¡¡self¡­exclusion¡¡and¡¡explicit¡¡putting¡¡itself¡¡as¡¡the¡¡Many¡£¡¡Each¡¡of
the¡¡Many¡¡however¡¡is¡¡itself¡¡a¡¡One£»¡¡and¡¡in¡¡virtue¡¡of¡¡its¡¡so¡¡behaving£»¡¡this¡¡all¡¡rounded¡¡repulsion¡¡is¡¡by
one¡¡stroke¡¡converted¡¡into¡¡its¡¡opposite¡¡¡­¡¡Attraction¡£¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡98
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Attraction¡¡and¡¡Repulsion

£§c£§¡¡But¡¡the¡¡Many¡¡are¡¡one¡¡the¡¡same¡¡as¡¡another£º¡¡each¡¡is¡¡One£»¡¡or¡¡even¡¡one¡¡of¡¡the
Many£»¡¡they¡¡are¡¡consequently¡¡one¡¡and¡¡the¡¡same¡£¡¡Or¡¡when¡¡we¡¡study¡¡all¡¡that
Repulsion¡¡involves£»¡¡we¡¡see¡¡that¡¡as¡¡a¡¡negative¡¡attitude¡¡of¡¡many¡¡Ones¡¡to¡¡one
another£»¡¡it¡¡is¡¡just¡¡as¡¡essentially¡¡a¡¡connective¡¡reference¡¡of¡¡them¡¡to¡¡each¡¡other£»¡¡and
as¡¡those¡¡to¡¡which¡¡the¡¡One¡¡is¡¡related¡¡in¡¡its¡¡act¡¡of¡¡repulsion¡¡are¡¡ones£»¡¡it¡¡is¡¡in¡¡them
thrown¡¡into¡¡relation¡¡with¡¡itself¡£¡¡The¡¡repulsion¡¡therefore¡¡has¡¡an¡¡equal¡¡right¡¡to¡¡be
called¡¡Attraction£»¡¡and¡¡the¡¡exclusive¡¡One£»¡¡or¡¡Being¡­for¡­self£»¡¡suppresses¡¡itself¡£¡¡The
qualitative¡¡character£»¡¡which¡¡in¡¡the¡¡One¡¡or¡¡unit¡¡has¡¡reached¡¡the¡¡extreme¡¡point¡¡of¡¡its
characterisation£»¡¡has¡¡thus¡¡passed¡¡over¡¡into¡¡determinateness¡¡£¨quality£©¡¡suppressed£»
i¡£e¡£¡¡into¡¡Being¡¡as¡¡Quantity¡£¡¡

The¡¡philosophy¡¡of¡¡the¡¡Atomists¡¡is¡¡the¡¡doctrine¡¡in¡¡which¡¡the¡¡Absolute¡¡is
formulated¡¡as¡¡Being¡­for¡­self£»¡¡as¡¡One£»¡¡and¡¡many¡¡ones¡£¡¡And¡¡it¡¡is¡¡the¡¡repulsion£»
which¡¡shows¡¡itself¡¡in¡¡the¡¡notion¡¡of¡¡the¡¡One£»¡¡which¡¡is¡¡assumed¡¡as¡¡the¡¡fundamental
force¡¡in¡¡these¡¡atoms¡£¡¡But¡¡instead¡¡of¡¡attraction£»¡¡it¡¡is¡¡Accident£»¡¡that¡¡is£»¡¡mere
unintelligence£»¡¡which¡¡is¡¡expected¡¡to¡¡bring¡¡them¡¡together¡£¡¡So¡¡long¡¡as¡¡the¡¡One¡¡is
fixed¡¡as¡¡one£»¡¡it¡¡is¡¡certainly¡¡impossible¡¡to¡¡regard¡¡its¡¡congression¡¡with¡¡others¡¡as
anything¡¡but¡¡external¡¡and¡¡mechanical¡£¡¡The¡¡Void£»¡¡which¡¡is¡¡assumed¡¡as¡¡the
complementary¡¡principle¡¡to¡¡the¡¡atoms£»¡¡is¡¡repulsion¡¡and¡¡nothing¡¡else£»¡¡presented
under¡¡the¡¡image¡¡of¡¡the¡¡nothing¡¡existing¡¡between¡¡the¡¡atoms¡£¡¡Modern¡¡Atomism¡¡¡­
and¡¡physics¡¡is¡¡still¡¡in¡¡principle¡¡atomistic¡¡¡­¡¡has¡¡surrendered¡¡the¡¡atoms¡¡so¡¡far¡¡as¡¡to
pin¡¡its¡¡faith¡¡on¡¡molecules¡¡or¡¡particles¡£¡¡In¡¡doing¡¡so£»¡¡science¡¡has¡¡come¡¡closer¡¡to
sensuous¡¡conception£»¡¡at¡¡the¡¡cost¡¡of¡¡losing¡¡the¡¡precision¡¡of¡¡thought¡£¡¡To¡¡put¡¡an
attractive¡¡by¡¡the¡¡side¡¡of¡¡a¡¡repulsive¡¡for

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ