±´¿Çµç×ÓÊé > ½ÌÓý³ö°æµç×ÓÊé > the+critique+of+pure+reason_´¿´âÀíÐÔÅúÅÐ >

µÚ83ÕÂ

the+critique+of+pure+reason_´¿´âÀíÐÔÅúÅÐ-µÚ83ÕÂ

С˵£º the+critique+of+pure+reason_´¿´âÀíÐÔÅúÅÐ ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



time£»¡¡and¡¡contains¡¡a¡¡series¡£¡¡And¡¡as¡¡in¡¡this¡¡series¡¡of¡¡aggregated
spaces¡¡£¨for¡¡example£»¡¡the¡¡feet¡¡in¡¡a¡¡rood£©£»¡¡beginning¡¡with¡¡a¡¡given
portion¡¡of¡¡space£»¡¡those¡¡which¡¡continue¡¡to¡¡be¡¡annexed¡¡form¡¡the
condition¡¡of¡¡the¡¡limits¡¡of¡¡the¡¡former¡­¡¡the¡¡measurement¡¡of¡¡a¡¡space¡¡must
also¡¡be¡¡regarded¡¡as¡¡a¡¡synthesis¡¡of¡¡the¡¡series¡¡of¡¡the¡¡conditions¡¡of¡¡a
given¡¡conditioned¡£¡¡It¡¡differs£»¡¡however£»¡¡in¡¡this¡¡respect¡¡from¡¡that¡¡of
time£»¡¡that¡¡the¡¡side¡¡of¡¡the¡¡conditioned¡¡is¡¡not¡¡in¡¡itself
distinguishable¡¡from¡¡the¡¡side¡¡of¡¡the¡¡condition£»¡¡and£»¡¡consequently£»
regressus¡¡and¡¡progressus¡¡in¡¡space¡¡seem¡¡to¡¡be¡¡identical¡£¡¡But£»
inasmuch¡¡as¡¡one¡¡part¡¡of¡¡space¡¡is¡¡not¡¡given£»¡¡but¡¡only¡¡limited£»¡¡by¡¡and
through¡¡another£»¡¡we¡¡must¡¡also¡¡consider¡¡every¡¡limited¡¡space¡¡as
conditioned£»¡¡in¡¡so¡¡far¡¡as¡¡it¡¡presupposes¡¡some¡¡other¡¡space¡¡as¡¡the
condition¡¡of¡¡its¡¡limitation£»¡¡and¡¡so¡¡on¡£¡¡As¡¡regards¡¡limitation£»
therefore£»¡¡our¡¡procedure¡¡in¡¡space¡¡is¡¡also¡¡a¡¡regressus£»¡¡and¡¡the
transcendental¡¡idea¡¡of¡¡the¡¡absolute¡¡totality¡¡of¡¡the¡¡synthesis¡¡in¡¡a
series¡¡of¡¡conditions¡¡applies¡¡to¡¡space¡¡also£»¡¡and¡¡I¡¡am¡¡entitled¡¡to
demand¡¡the¡¡absolute¡¡totality¡¡of¡¡the¡¡phenomenal¡¡synthesis¡¡in¡¡space¡¡as
well¡¡as¡¡in¡¡time¡£¡¡Whether¡¡my¡¡demand¡¡can¡¡be¡¡satisfied¡¡is¡¡a¡¡question¡¡to
be¡¡answered¡¡in¡¡the¡¡sequel¡£
¡¡¡¡Secondly£»¡¡the¡¡real¡¡in¡¡space¡­¡¡that¡¡is£»¡¡matter¡­¡¡is¡¡conditioned¡£¡¡Its
internal¡¡conditions¡¡are¡¡its¡¡parts£»¡¡and¡¡the¡¡parts¡¡of¡¡parts¡¡its¡¡remote
conditions£»¡¡so¡¡that¡¡in¡¡this¡¡case¡¡we¡¡find¡¡a¡¡regressive¡¡synthesis£»¡¡the
absolute¡¡totality¡¡of¡¡which¡¡is¡¡a¡¡demand¡¡of¡¡reason¡£¡¡But¡¡this¡¡cannot¡¡be
obtained¡¡otherwise¡¡than¡¡by¡¡a¡¡plete¡¡division¡¡of¡¡parts£»¡¡whereby¡¡the
real¡¡in¡¡matter¡¡bees¡¡either¡¡nothing¡¡or¡¡that¡¡which¡¡is¡¡not¡¡matter£»
that¡¡is¡¡to¡¡say£»¡¡the¡¡simple¡£¡¡Consequently¡¡we¡¡find¡¡here¡¡also¡¡a¡¡series¡¡of
conditions¡¡and¡¡a¡¡progress¡¡to¡¡the¡¡unconditioned¡£
¡¡¡¡Thirdly£»¡¡as¡¡regards¡¡the¡¡categories¡¡of¡¡a¡¡real¡¡relation¡¡between
phenomena£»¡¡the¡¡category¡¡of¡¡substance¡¡and¡¡its¡¡accidents¡¡is¡¡not¡¡suitable
for¡¡the¡¡formation¡¡of¡¡a¡¡transcendental¡¡idea£»¡¡that¡¡is¡¡to¡¡say£»¡¡reason¡¡has
no¡¡ground£»¡¡in¡¡regard¡¡to¡¡it£»¡¡to¡¡proceed¡¡regressively¡¡with¡¡conditions¡£
For¡¡accidents¡¡£¨in¡¡so¡¡far¡¡as¡¡they¡¡inhere¡¡in¡¡a¡¡substance£©¡¡are
co¡­ordinated¡¡with¡¡each¡¡other£»¡¡and¡¡do¡¡not¡¡constitute¡¡a¡¡series¡£¡¡And£»
in¡¡relation¡¡to¡¡substance£»¡¡they¡¡are¡¡not¡¡properly¡¡subordinated¡¡to¡¡it£»
but¡¡are¡¡the¡¡mode¡¡of¡¡existence¡¡of¡¡the¡¡substance¡¡itself¡£¡¡The
conception¡¡of¡¡the¡¡substantial¡¡might¡¡nevertheless¡¡seem¡¡to¡¡be¡¡an¡¡idea¡¡of
the¡¡transcendental¡¡reason¡£¡¡But£»¡¡as¡¡this¡¡signifies¡¡nothing¡¡more¡¡than
the¡¡conception¡¡of¡¡an¡¡object¡¡in¡¡general£»¡¡which¡¡subsists¡¡in¡¡so¡¡far¡¡as¡¡we
cogitate¡¡in¡¡it¡¡merely¡¡a¡¡transcendental¡¡subject¡¡without¡¡any¡¡predicates£»
and¡¡as¡¡the¡¡question¡¡here¡¡is¡¡of¡¡an¡¡unconditioned¡¡in¡¡the¡¡series¡¡of
phenomena¡­¡¡it¡¡is¡¡clear¡¡that¡¡the¡¡substantial¡¡can¡¡form¡¡no¡¡member
thereof¡£¡¡The¡¡same¡¡holds¡¡good¡¡of¡¡substances¡¡in¡¡munity£»¡¡which¡¡are
mere¡¡aggregates¡¡and¡¡do¡¡not¡¡form¡¡a¡¡series¡£¡¡For¡¡they¡¡are¡¡not
subordinated¡¡to¡¡each¡¡other¡¡as¡¡conditions¡¡of¡¡the¡¡possibility¡¡of¡¡each
other£»¡¡which£»¡¡however£»¡¡may¡¡be¡¡affirmed¡¡of¡¡spaces£»¡¡the¡¡limits¡¡of
which¡¡are¡¡never¡¡determined¡¡in¡¡themselves£»¡¡but¡¡always¡¡by¡¡some¡¡other
space¡£¡¡It¡¡is£»¡¡therefore£»¡¡only¡¡in¡¡the¡¡category¡¡of¡¡causality¡¡that¡¡we¡¡can
find¡¡a¡¡series¡¡of¡¡causes¡¡to¡¡a¡¡given¡¡effect£»¡¡and¡¡in¡¡which¡¡we¡¡ascend¡¡from
the¡¡latter£»¡¡as¡¡the¡¡conditioned£»¡¡to¡¡the¡¡former¡¡as¡¡the¡¡conditions£»¡¡and
thus¡¡answer¡¡the¡¡question¡¡of¡¡reason¡£
¡¡¡¡Fourthly£»¡¡the¡¡conceptions¡¡of¡¡the¡¡possible£»¡¡the¡¡actual£»¡¡and¡¡the
necessary¡¡do¡¡not¡¡conduct¡¡us¡¡to¡¡any¡¡series¡­¡¡excepting¡¡only¡¡in¡¡so¡¡far¡¡as
the¡¡contingent¡¡in¡¡existence¡¡must¡¡always¡¡be¡¡regarded¡¡as¡¡conditioned£»
and¡¡as¡¡indicating£»¡¡according¡¡to¡¡a¡¡law¡¡of¡¡the¡¡understanding£»¡¡a
condition£»¡¡under¡¡which¡¡it¡¡is¡¡necessary¡¡to¡¡rise¡¡to¡¡a¡¡higher£»¡¡till¡¡in
the¡¡totality¡¡of¡¡the¡¡series£»¡¡reason¡¡arrives¡¡at¡¡unconditioned¡¡necessity¡£
¡¡¡¡There¡¡are£»¡¡accordingly£»¡¡only¡¡four¡¡cosmological¡¡ideas£»
corresponding¡¡with¡¡the¡¡four¡¡titles¡¡of¡¡the¡¡categories¡£¡¡For¡¡we¡¡can
select¡¡only¡¡such¡¡as¡¡necessarily¡¡furnish¡¡us¡¡with¡¡a¡¡series¡¡in¡¡the
synthesis¡¡of¡¡the¡¡manifold¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡pleteness
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡POSITION
¡¡¡¡¡¡¡¡¡¡of¡¡the¡¡given¡¡totality¡¡of¡¡all¡¡phenomena¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡pleteness
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡DIVISION
¡¡¡¡¡¡¡¡¡¡of¡¡given¡¡totality¡¡in¡¡a¡¡phenomenon¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡pleteness
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ORIGINATION
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡a¡¡phenomenon¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡pleteness
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the¡¡DEPENDENCE¡¡of¡¡the¡¡EXISTENCE
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡what¡¡is¡¡changeable¡¡in¡¡a¡¡phenomenon¡£

¡¡¡¡We¡¡must¡¡here¡¡remark£»¡¡in¡¡the¡¡first¡¡place£»¡¡that¡¡the¡¡idea¡¡of¡¡absolute
totality¡¡relates¡¡to¡¡nothing¡¡but¡¡the¡¡exposition¡¡of¡¡phenomena£»¡¡and
therefore¡¡not¡¡to¡¡the¡¡pure¡¡conception¡¡of¡¡a¡¡totality¡¡of¡¡things¡£
Phenomena¡¡are¡¡here£»¡¡therefore£»¡¡regarded¡¡as¡¡given£»¡¡and¡¡reason
requires¡¡the¡¡absolute¡¡pleteness¡¡of¡¡the¡¡conditions¡¡of¡¡their
possibility£»¡¡in¡¡so¡¡far¡¡as¡¡these¡¡conditions¡¡constitute¡¡a¡¡series¡­
consequently¡¡an¡¡absolutely¡¡£¨that¡¡is£»¡¡in¡¡every¡¡respect£©¡¡plete
synthesis£»¡¡whereby¡¡a¡¡phenomenon¡¡can¡¡be¡¡explained¡¡according¡¡to¡¡the¡¡laws
of¡¡the¡¡understanding¡£
¡¡¡¡Secondly£»¡¡it¡¡is¡¡properly¡¡the¡¡unconditioned¡¡alone¡¡that¡¡reason¡¡seeks
in¡¡this¡¡serially¡¡and¡¡regressively¡¡conducted¡¡synthesis¡¡of¡¡conditions¡£
It¡¡wishes£»¡¡to¡¡speak¡¡in¡¡another¡¡way£»¡¡to¡¡attain¡¡to¡¡pleteness¡¡in¡¡the
series¡¡of¡¡premisses£»¡¡so¡¡as¡¡to¡¡render¡¡it¡¡unnecessary¡¡to¡¡presuppose
others¡£¡¡This¡¡unconditioned¡¡is¡¡always¡¡contained¡¡in¡¡the¡¡absolute
totality¡¡of¡¡the¡¡series£»¡¡when¡¡we¡¡endeavour¡¡to¡¡form¡¡a¡¡representation
of¡¡it¡¡in¡¡thought¡£¡¡But¡¡this¡¡absolutely¡¡plete¡¡synthesis¡¡is¡¡itself¡¡but
an¡¡idea£»¡¡for¡¡it¡¡is¡¡impossible£»¡¡at¡¡least¡¡before¡¡hand£»¡¡to¡¡know¡¡whether
any¡¡such¡¡synthesis¡¡is¡¡possible¡¡in¡¡the¡¡case¡¡of¡¡phenomena¡£¡¡When¡¡we
represent¡¡all¡¡existence¡¡in¡¡thought¡¡by¡¡means¡¡of¡¡pure¡¡conceptions¡¡of¡¡the
understanding£»¡¡without¡¡any¡¡conditions¡¡of¡¡sensuous¡¡intuition£»¡¡we¡¡may
say¡¡with¡¡justice¡¡that¡¡for¡¡a¡¡given¡¡conditioned¡¡the¡¡whole¡¡series¡¡of
conditions¡¡subordinated¡¡to¡¡each¡¡other¡¡is¡¡also¡¡given£»¡¡for¡¡the¡¡former¡¡is
only¡¡given¡¡through¡¡the¡¡latter¡£¡¡But¡¡we¡¡find¡¡in¡¡the¡¡case¡¡of¡¡phenomena
a¡¡particular¡¡limitation¡¡of¡¡the¡¡mode¡¡in¡¡which¡¡conditions¡¡are¡¡given£»
that¡¡is£»¡¡through¡¡the¡¡successive¡¡synthesis¡¡of¡¡the¡¡manifold¡¡of
intuition£»¡¡which¡¡must¡¡be¡¡plete¡¡in¡¡the¡¡regress¡£¡¡Now¡¡whether¡¡this
pleteness¡¡is¡¡sensuously¡¡possible£»¡¡is¡¡a¡¡problem¡£¡¡But¡¡the¡¡idea¡¡of
it¡¡lies¡¡in¡¡the¡¡reason¡­¡¡be¡¡it¡¡possible¡¡or¡¡impossible¡¡to¡¡connect¡¡with
the¡¡idea¡¡adequate¡¡empirical¡¡conceptions¡£¡¡Therefore£»¡¡as¡¡in¡¡the¡¡absolute
totality¡¡of¡¡the¡¡regressive¡¡synthesis¡¡of¡¡the¡¡manifold¡¡in¡¡a¡¡phenomenon
£¨following¡¡the¡¡guidance¡¡of¡¡the¡¡categories£»¡¡which¡¡represent¡¡it¡¡as¡¡a
series¡¡of¡¡conditions¡¡to¡¡a¡¡given¡¡conditioned£©¡¡the¡¡unconditioned¡¡is
necessarily¡¡contained¡­¡¡it¡¡being¡¡still¡¡left¡¡unascertained¡¡whether¡¡and
how¡¡this¡¡totality¡¡exists£»¡¡reason¡¡sets¡¡out¡¡from¡¡the¡¡idea¡¡of¡¡totality£»
although¡¡its¡¡proper¡¡and¡¡final¡¡aim¡¡is¡¡the¡¡unconditioned¡­¡¡of¡¡the¡¡whole
series£»¡¡or¡¡of¡¡a¡¡part¡¡thereof¡£
¡¡¡¡This¡¡unconditioned¡¡may¡¡be¡¡cogitated¡­¡¡either¡¡as¡¡existing¡¡only¡¡in
the¡¡entire¡¡series£»¡¡all¡¡the¡¡members¡¡of¡¡which¡¡therefore¡¡would¡¡be¡¡without
exception¡¡conditioned¡¡and¡¡only¡¡the¡¡totality¡¡absolutely
unconditioned¡­¡¡and¡¡in¡¡this¡¡case¡¡the¡¡regressus¡¡is¡¡called¡¡infinite£»¡¡or
the¡¡absolutely¡¡unconditioned¡¡is¡¡only¡¡a¡¡part¡¡of¡¡the¡¡series£»¡¡to¡¡which
the¡¡other¡¡members¡¡are¡¡subordinated£»¡¡but¡¡which¡¡Is¡¡not¡¡itself
submitted¡¡to¡¡any¡¡other¡¡condition¡£*¡¡In¡¡the¡¡former¡¡case¡¡the¡¡series¡¡is
a¡¡parte¡¡priori¡¡unlimited¡¡£¨without¡¡beginning£©£»¡¡that¡¡is£»¡¡infinite£»¡¡and
nevertheless¡¡pletely¡¡given¡£¡¡But¡¡the¡¡regress¡¡in¡¡it¡¡is¡¡never
pleted£»¡¡and¡¡can¡¡only¡¡be¡¡called¡¡potentially¡¡infinite¡£¡¡In¡¡the
second¡¡case¡¡there¡¡exists¡¡a¡¡first¡¡in¡¡the¡¡series¡£¡¡This¡¡first¡¡is
called£»¡¡in¡¡relation¡¡to¡¡past¡¡time£»¡¡the¡¡beginning¡¡of¡¡the¡¡world£»¡¡in
relation¡¡to¡¡space£»¡¡the¡¡limit¡¡of¡¡the¡¡world£»¡¡in¡¡relation¡¡to¡¡the¡¡parts¡¡of
a¡¡given¡¡limited¡¡whole£»¡¡the¡¡simple£»¡¡in¡¡relation¡¡to¡¡causes£»¡¡absolute
spontaneity¡¡£¨liberty£©£»¡¡and¡¡in¡¡relation¡¡to¡¡the¡¡existence¡¡of
changeable¡¡things£»¡¡absolute¡¡physical¡¡necessity¡£

¡¡¡¡*The¡¡absolute¡¡totality¡¡of¡¡the¡¡series¡¡of¡¡conditions¡¡to¡¡a¡¡given
conditioned¡¡is¡¡always¡¡unconditioned£»¡¡because¡¡beyond¡¡it¡¡there¡¡exist
no¡¡other¡¡conditions£»¡¡on¡¡which¡¡it¡¡might¡¡depend¡£¡¡But¡¡the¡¡absolute
totality¡¡of¡¡such¡¡a¡¡series¡¡is¡¡only¡¡an¡¡idea£»¡¡or¡¡rather¡¡a¡¡problematical
conception£»¡¡the¡¡possibility¡¡of¡¡which¡¡must¡¡be¡¡investigated¡­
particularly¡¡in¡¡relati

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨1£© ²È£¨2£©

Äã¿ÉÄÜϲ»¶µÄ