the+critique+of+pure+reason_´¿´âÀíÐÔÅúÅÐ-µÚ42ÕÂ
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
condition£»¡¡and£»¡¡as¡¡it¡¡were£»¡¡the¡¡exponent¡¡of¡¡a¡¡rule£»¡¡experience£»¡¡on¡¡the
other¡¡hand£»¡¡gives¡¡the¡¡case¡¡which¡¡es¡¡under¡¡the¡¡rule¡£
¡¡¡¡There¡¡is¡¡no¡¡danger¡¡of¡¡our¡¡mistaking¡¡merely¡¡empirical¡¡principles
for¡¡principles¡¡of¡¡the¡¡pure¡¡understanding£»¡¡or¡¡conversely£»¡¡for¡¡the
character¡¡of¡¡necessity£»¡¡according¡¡to¡¡conceptions¡¡which¡¡distinguish¡¡the
latter£»¡¡and¡¡the¡¡absence¡¡of¡¡this¡¡in¡¡every¡¡empirical¡¡proposition£»¡¡how
extensively¡¡valid¡¡soever¡¡it¡¡may¡¡be£»¡¡is¡¡a¡¡perfect¡¡safeguard¡¡against
confounding¡¡them¡£¡¡There¡¡are£»¡¡however£»¡¡pure¡¡principles¡¡a¡¡priori£»
which¡¡nevertheless¡¡I¡¡should¡¡not¡¡ascribe¡¡to¡¡the¡¡pure¡¡understanding¡¡¡for
this¡¡reason£»¡¡that¡¡they¡¡are¡¡not¡¡derived¡¡from¡¡pure¡¡conceptions£»¡¡but
£¨although¡¡by¡¡the¡¡mediation¡¡of¡¡the¡¡understanding£©¡¡from¡¡pure¡¡intuitions¡£
But¡¡understanding¡¡is¡¡the¡¡faculty¡¡of¡¡conceptions¡£¡¡Such¡¡principles
mathematical¡¡science¡¡possesses£»¡¡but¡¡their¡¡application¡¡to¡¡experience£»
consequently¡¡their¡¡objective¡¡validity£»¡¡nay¡¡the¡¡possibility¡¡of¡¡such¡¡a
priori¡¡synthetical¡¡cognitions¡¡£¨the¡¡deduction¡¡thereof£©¡¡rests¡¡entirely
upon¡¡the¡¡pure¡¡understanding¡£
¡¡¡¡On¡¡this¡¡account£»¡¡I¡¡shall¡¡not¡¡reckon¡¡among¡¡my¡¡principles¡¡those¡¡of
mathematics£»¡¡though¡¡I¡¡shall¡¡include¡¡those¡¡upon¡¡the¡¡possibility¡¡and
objective¡¡validity¡¡a¡¡priori£»¡¡of¡¡principles¡¡of¡¡the¡¡mathematical
science£»¡¡which£»¡¡consequently£»¡¡are¡¡to¡¡be¡¡looked¡¡upon¡¡as¡¡the¡¡principle
of¡¡these£»¡¡and¡¡which¡¡proceed¡¡from¡¡conceptions¡¡to¡¡intuition£»¡¡and¡¡not
from¡¡intuition¡¡to¡¡conceptions¡£
¡¡¡¡In¡¡the¡¡application¡¡of¡¡the¡¡pure¡¡conceptions¡¡of¡¡the¡¡understanding¡¡to
possible¡¡experience£»¡¡the¡¡employment¡¡of¡¡their¡¡synthesis¡¡is¡¡either
mathematical¡¡or¡¡dynamical£»¡¡for¡¡it¡¡is¡¡directed¡¡partly¡¡on¡¡the
intuition¡¡alone£»¡¡partly¡¡on¡¡the¡¡existence¡¡of¡¡a¡¡phenomenon¡£¡¡But¡¡the¡¡a
priori¡¡conditions¡¡of¡¡intuition¡¡are¡¡in¡¡relation¡¡to¡¡a¡¡possible
experience¡¡absolutely¡¡necessary£»¡¡those¡¡of¡¡the¡¡existence¡¡of¡¡objects
of¡¡a¡¡possible¡¡empirical¡¡intuition¡¡are¡¡in¡¡themselves¡¡contingent¡£
Hence¡¡the¡¡principles¡¡of¡¡the¡¡mathematical¡¡use¡¡of¡¡the¡¡categories¡¡will
possess¡¡a¡¡character¡¡of¡¡absolute¡¡necessity£»¡¡that¡¡is£»¡¡will¡¡be
apodeictic£»¡¡those£»¡¡on¡¡the¡¡other¡¡hand£»¡¡of¡¡the¡¡dynamical¡¡use£»¡¡the
character¡¡of¡¡an¡¡a¡¡priori¡¡necessity¡¡indeed£»¡¡but¡¡only¡¡under¡¡the
condition¡¡of¡¡empirical¡¡thought¡¡in¡¡an¡¡experience£»¡¡therefore¡¡only
mediately¡¡and¡¡indirectly¡£¡¡Consequently¡¡they¡¡will¡¡not¡¡possess¡¡that
immediate¡¡evidence¡¡which¡¡is¡¡peculiar¡¡to¡¡the¡¡former£»¡¡although¡¡their
application¡¡to¡¡experience¡¡does¡¡not£»¡¡for¡¡that¡¡reason£»¡¡lose¡¡its¡¡truth
and¡¡certitude¡£¡¡But¡¡of¡¡this¡¡point¡¡we¡¡shall¡¡be¡¡better¡¡able¡¡to¡¡judge¡¡at
the¡¡conclusion¡¡of¡¡this¡¡system¡¡of¡¡principles¡£
¡¡¡¡The¡¡table¡¡of¡¡the¡¡categories¡¡is¡¡naturally¡¡our¡¡guide¡¡to¡¡the¡¡table¡¡of
principles£»¡¡because¡¡these¡¡are¡¡nothing¡¡else¡¡than¡¡rules¡¡for¡¡the
objective¡¡employment¡¡of¡¡the¡¡former¡£¡¡Accordingly£»¡¡all¡¡principles¡¡of¡¡the
pure¡¡understanding¡¡are£º
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Axioms
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Intuition
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Anticipations¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Analogies
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Perception¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡Experience
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Postulates¡¡of
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Empirical¡¡Thought
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡in¡¡general
¡¡¡¡These¡¡appellations¡¡I¡¡have¡¡chosen¡¡advisedly£»¡¡in¡¡order¡¡that¡¡we¡¡might
not¡¡lose¡¡sight¡¡of¡¡the¡¡distinctions¡¡in¡¡respect¡¡of¡¡the¡¡evidence¡¡and
the¡¡employment¡¡of¡¡these¡¡principles¡£¡¡It¡¡will£»¡¡however£»¡¡soon¡¡appear
that¡¡¡a¡¡fact¡¡which¡¡concerns¡¡both¡¡the¡¡evidence¡¡of¡¡these¡¡principles£»¡¡and
the¡¡a¡¡priori¡¡determination¡¡of¡¡phenomena¡¡¡according¡¡to¡¡the¡¡categories
of¡¡quantity¡¡and¡¡quality¡¡£¨if¡¡we¡¡attend¡¡merely¡¡to¡¡the¡¡form¡¡of¡¡these£©£»
the¡¡principles¡¡of¡¡these¡¡categories¡¡are¡¡distinguishable¡¡from¡¡those¡¡of
the¡¡two¡¡others£»¡¡in¡¡as¡¡much¡¡as¡¡the¡¡former¡¡are¡¡possessed¡¡of¡¡an
intuitive£»¡¡but¡¡the¡¡latter¡¡of¡¡a¡¡merely¡¡discursive£»¡¡though¡¡in¡¡both
instances¡¡a¡¡plete£»¡¡certitude¡£¡¡I¡¡shall¡¡therefore¡¡call¡¡the¡¡former
mathematical£»¡¡and¡¡the¡¡latter¡¡dynamical¡¡principles¡£*¡¡It¡¡must¡¡be
observed£»¡¡however£»¡¡that¡¡by¡¡these¡¡terms¡¡I¡¡mean¡¡just¡¡as¡¡little¡¡in¡¡the
one¡¡case¡¡the¡¡principles¡¡of¡¡mathematics¡¡as¡¡those¡¡of¡¡general
£¨physical£©¡¡dynamics¡¡in¡¡the¡¡other¡£¡¡I¡¡have¡¡here¡¡in¡¡view¡¡merely¡¡the
principles¡¡of¡¡the¡¡pure¡¡understanding£»¡¡in¡¡their¡¡application¡¡to¡¡the
internal¡¡sense¡¡£¨without¡¡distinction¡¡of¡¡the¡¡representations¡¡given
therein£©£»¡¡by¡¡means¡¡of¡¡which¡¡the¡¡sciences¡¡of¡¡mathematics¡¡and¡¡dynamics
bee¡¡possible¡£¡¡Accordingly£»¡¡I¡¡have¡¡named¡¡these¡¡principles¡¡rather
with¡¡reference¡¡to¡¡their¡¡application¡¡than¡¡their¡¡content£»¡¡and¡¡I¡¡shall
now¡¡proceed¡¡to¡¡consider¡¡them¡¡in¡¡the¡¡order¡¡in¡¡which¡¡they¡¡stand¡¡in¡¡the
table¡£
¡¡¡¡*All¡¡bination¡¡£¨conjunctio£©¡¡is¡¡either¡¡position¡¡£¨positio£©
or¡¡connection¡¡£¨nexus£©¡£¡¡The¡¡former¡¡is¡¡the¡¡synthesis¡¡of¡¡a¡¡manifold£»
the¡¡parts¡¡of¡¡which¡¡do¡¡not¡¡necessarily¡¡belong¡¡to¡¡each¡¡other¡£¡¡For
example£»¡¡the¡¡two¡¡triangles¡¡into¡¡which¡¡a¡¡square¡¡is¡¡divided¡¡by¡¡a
diagonal£»¡¡do¡¡not¡¡necessarily¡¡belong¡¡to¡¡each¡¡other£»¡¡and¡¡of¡¡this¡¡kind¡¡is
the¡¡synthesis¡¡of¡¡the¡¡homogeneous¡¡in¡¡everything¡¡that¡¡can¡¡be
mathematically¡¡considered¡£¡¡This¡¡synthesis¡¡can¡¡be¡¡divided¡¡into¡¡those¡¡of
aggregation¡¡and¡¡coalition£»¡¡the¡¡former¡¡of¡¡which¡¡is¡¡applied¡¡to
extensive£»¡¡the¡¡latter¡¡to¡¡intensive¡¡quantities¡£¡¡The¡¡second¡¡sort¡¡of
bination¡¡£¨nexus£©¡¡is¡¡the¡¡synthesis¡¡of¡¡a¡¡manifold£»¡¡in¡¡so¡¡far¡¡as¡¡its
parts¡¡do¡¡belong¡¡necessarily¡¡to¡¡each¡¡other£»¡¡for¡¡example£»¡¡the¡¡accident
to¡¡a¡¡substance£»¡¡or¡¡the¡¡effect¡¡to¡¡the¡¡cause¡£¡¡Consequently¡¡it¡¡is¡¡a
synthesis¡¡of¡¡that¡¡which¡¡though¡¡heterogeneous£»¡¡is¡¡represented¡¡as
connected¡¡a¡¡priori¡£¡¡This¡¡bination¡¡¡not¡¡an¡¡arbitrary¡¡one¡¡¡I
entitle¡¡dynamical¡¡because¡¡it¡¡concerns¡¡the¡¡connection¡¡of¡¡the
existence¡¡of¡¡the¡¡manifold¡£¡¡This£»¡¡again£»¡¡may¡¡be¡¡divided¡¡into¡¡the
physical¡¡synthesis£»¡¡of¡¡the¡¡phenomena¡¡divided¡¡among¡¡each¡¡other£»¡¡and¡¡the
metaphysical¡¡synthesis£»¡¡or¡¡the¡¡connection¡¡of¡¡phenomena¡¡a¡¡priori¡¡in¡¡the
faculty¡¡of¡¡cognition¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1¡£¡¡AXIOMS¡¡OF¡¡INTUITION¡£
¡¡¡¡¡¡¡¡¡¡The¡¡principle¡¡of¡¡these¡¡is£º¡¡All¡¡Intuitions¡¡are¡¡Extensive
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quantities¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡PROOF¡£
¡¡¡¡All¡¡phenomena¡¡contain£»¡¡as¡¡regards¡¡their¡¡form£»¡¡an¡¡intuition¡¡in
space¡¡and¡¡time£»¡¡which¡¡lies¡¡a¡¡priori¡¡at¡¡the¡¡foundation¡¡of¡¡all¡¡without
exception¡£¡¡Phenomena£»¡¡therefore£»¡¡cannot¡¡be¡¡apprehended£»¡¡that¡¡is£»
received¡¡into¡¡empirical¡¡consciousness¡¡otherwise¡¡than¡¡through¡¡the
synthesis¡¡of¡¡a¡¡manifold£»¡¡through¡¡which¡¡the¡¡representations¡¡of¡¡a
determinate¡¡space¡¡or¡¡time¡¡are¡¡generated£»¡¡that¡¡is¡¡to¡¡say£»¡¡through¡¡the
position¡¡of¡¡the¡¡homogeneous¡¡and¡¡the¡¡consciousness¡¡of¡¡the
synthetical¡¡unity¡¡of¡¡this¡¡manifold¡¡£¨homogeneous£©¡£¡¡Now¡¡the
consciousness¡¡of¡¡a¡¡homogeneous¡¡manifold¡¡in¡¡intuition£»¡¡in¡¡so¡¡far¡¡as
thereby¡¡the¡¡representation¡¡of¡¡an¡¡object¡¡is¡¡rendered¡¡possible£»¡¡is¡¡the
conception¡¡of¡¡a¡¡quantity¡¡£¨quanti£©¡£¡¡Consequently£»¡¡even¡¡the¡¡perception
of¡¡an¡¡object¡¡as¡¡phenomenon¡¡is¡¡possible¡¡only¡¡through¡¡the¡¡same
synthetical¡¡unity¡¡of¡¡the¡¡manifold¡¡of¡¡the¡¡given¡¡sensuous¡¡intuition£»
through¡¡which¡¡the¡¡unity¡¡of¡¡the¡¡position¡¡of¡¡the¡¡homogeneous¡¡manifold
in¡¡the¡¡conception¡¡of¡¡a¡¡quantity¡¡is¡¡cogitated£»¡¡that¡¡is¡¡to¡¡say£»¡¡all
phenomena¡¡are¡¡quantities£»¡¡and¡¡extensive¡¡quantities£»¡¡because¡¡as
intuitions¡¡in¡¡space¡¡or¡¡time¡¡they¡¡must¡¡be¡¡represented¡¡by¡¡means¡¡of¡¡the
same¡¡synthesis¡¡through¡¡which¡¡space¡¡and¡¡time¡¡themselves¡¡are¡¡determined¡£
¡¡¡¡An¡¡extensive¡¡quantity¡¡I¡¡call¡¡that¡¡wherein¡¡the¡¡representation¡¡of
the¡¡parts¡¡renders¡¡possible¡¡£¨and¡¡therefore¡¡necessarily¡¡antecedes£©¡¡the
representation¡¡of¡¡the¡¡whole¡£¡¡I¡¡cannot¡¡represent¡¡to¡¡myself¡¡any¡¡line£»
however¡¡small£»¡¡without¡¡drawing¡¡it¡¡in¡¡thought£»¡¡that¡¡is£»¡¡without
generating¡¡from¡¡a¡¡point¡¡all¡¡its¡¡parts¡¡one¡¡after¡¡another£»¡¡and¡¡in¡¡this
way¡¡alone¡¡producing¡¡this¡¡intuition¡£¡¡Precisely¡¡the¡¡same¡¡is¡¡the¡¡case
with¡¡every£»¡¡even¡¡the¡¡smallest£»¡¡portion¡¡of¡¡time¡£¡¡I¡¡cogitate¡¡therein
only¡¡the¡¡successive¡¡progress¡¡from¡¡one¡¡moment¡¡to¡¡another£»¡¡and¡¡hence£»¡¡by
means¡¡of¡¡the¡¡different¡¡portions¡¡of¡¡time¡¡and¡¡the¡¡addition¡¡of¡¡them£»¡¡a
determinate¡¡quantity¡¡of¡¡time¡¡is¡¡produced¡£¡¡As¡¡the¡¡pure¡¡intuition¡¡in¡¡all
phenomena¡¡is¡¡either¡¡time¡¡or¡¡space£»¡¡so¡¡is¡¡every¡¡phenomenon¡¡in¡¡its
character¡¡of¡¡intuition¡¡an¡¡extensive¡¡quantity£»¡¡inasmuch¡¡as¡¡it¡¡can
only¡¡be¡¡cognized¡¡in¡¡our¡¡apprehension¡¡by¡¡successive¡¡synthesis¡¡£¨from
part¡¡to¡¡part£©¡£¡¡All¡¡phenomena¡¡are£»¡¡accordingly£»¡¡to¡¡be¡¡considered¡¡as
aggregates£»¡¡that¡¡is£»¡¡as¡¡a¡¡collection¡¡of¡¡previously¡¡given¡¡parts£»
which¡¡is¡¡not¡¡the¡¡case¡¡with¡¡every¡¡sort¡¡of¡¡quantities£»¡¡but¡¡only¡¡with
those¡¡which¡¡are¡¡represented¡¡and¡¡apprehended¡¡by¡¡us¡¡as¡¡e